-
Electromagnetically-controlled precision is one of novel topics in the electromagnetics. To realize the precision controlling of the electromagnetically complicated phenomenon, the systematic characteristics of medium environment needs considering. Based on the cancellation of interference caused by quantum coherence in the systematic environment of material, the electromagnetically-induced transparency (EIT) can be achieved. For this nonlinear phenomenon, due to the advancement of quantum spot and well, the controlling of the bounded sate of quantum in various dimensions of semiconductor can be operated. So the solid system presents a clear superiority of controlling EIT. High power electromagnetic field excites the dynamic characteristics in solid material, which is the result of systematic reaction between field and material. Under the excitation of electromagnetic pulse, because of quantum coherence, the dual-well semiconductor has the ability to induce the dark state of solitons. In the study of the complicated system of multiple physical fields, two aspects need investigating further. Firstly, in the induction process of electromagnetic filed and solid material, the features of high dispersion and nonlinear reaction appear increasingly. Thus, due to the environmental restriction on dispersion and nonlinear reaction, electromagnetic dissipation is a crucial point, which needs considering in the electromagnetically-controlled precision of the EIT. Secondly, compared with the formation of soliton, the coupling reaction of solitons under co-sate is much complicated. The relation among these factors is necessary to be investigated in the formulation of soliton excitation. Therefore, a dual-well semiconductor is employed as solid environment to analyze the dynamic characteristics of dark solitons in the EIT. In order to achieve the controlling of precision and regulating of the effect, the environmental features of solid materials ought to be systematically considered. Accordingly, the variational method is utilized, through which the bounded action of dissipation and nonlinear coherence is effectively studied for the dark solitons under co-sate, and under the condition of exciting dark soliton in the system of EIT. Using the density matrix and electric polarization, the spectrum of dynamic transmission deviation of EIT is calculated in the solid environment. With the assistance of relevant action principle, the bounded relation of dark solitons under co-state is practically investigated in the dissipative environment of solid system. In addition, the space-time trajectory is analyzed in the applicable region of characteristic equations of dark solution. The deduced result indicates that the systematical balance between dissipative weakening and coherent coupling supports the valuable approach to controlling the space-time evolution of dark solitons in precision. The results also show that the special effect has the potential applications in electromagnetically-controlled precision in the quantum information, ray sensor, controllable environment, etc.
-
Keywords:
- dark soliton /
- electromagnetic controlling /
- dissipation and coherence /
- variational
[1] Harris S E 1997 Phys. Today 50 36
[2] Fleischhauer M, Imamoglu A, Marangos J P 2009 Rev. Mod. Phys. 77 633
[3] Liu S Y, Zheng B S, Li H M, Liu X C, Liu S B 2015 Chin. Phys. B 24 084204
[4] Niakan N, Askari M, Zakery A 2012 J. Opt. Soc. Am. B 29 2329
[5] Xu Z X, Li S L, Yin X X, Zhao H X, Liu L L 2017 Sci. Rep. 7 6098
[6] Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904
[7] Rose H A, Mounaix P 2011 Phys. Plasmas 18 042109
[8] Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201]
[9] Qi X Y, Cao Z, Bai J T 2013 Acta Phys. Sin. 62 064217 (in Chinese) [齐新元, 曹政, 白晋涛 2013 物理学报 62 064217]
[10] Zhang L S, Yang L J, Li X L, Han L, Li X W, Guo Q L, Fu G S 2007 Acta Opt. Sin. 27 1305 (in Chinese) [张连水, 杨丽君, 李晓莉, 韩理, 李晓苇, 郭庆林, 傅广生 2007 光学学报 27 1305]
[11] Li X L, Zhang L S, Yang B Z, Yang L J 2010 Acta Phys. Sin. 59 7008 (in Chinese) [李晓莉, 张连水, 杨宝柱, 杨丽君 2010 物理学报 59 7008]
[12] Wang L, Hu X M 2004 Acta Phys. Sin. 53 2551 (in Chinese) [王丽, 胡响明 2004 物理学报 53 2551]
[13] Li X L, Shang Y X, Sun J 2013 Acta Phys. Sin. 62 064202 (in Chinese) [李晓莉, 尚雅轩, 孙江 2013 物理学报 62 064202]
[14] Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta Phys. Sin. 66 034202 (in Chinese) [唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202]
[15] Zhu K Z, Jia W G, Zhang K, Yu Y, Zhang J P 2016 Acta Phys. Sin. 65 074204 (in Chinese) [朱坤占, 贾维国, 张魁, 于宇, 张俊萍 2016 物理学报 65 074204]
[16] Xi T T, Zhang J, Lu X, Hao Z Q, Yang H, Dong Q L, Wu H C 2006 Chin. Phys. 15 2025
[17] Ponomarenko S A, Agrawal G P 2006 Phys. Rev. Lett. 97 013901
[18] Gao X H, Zhang C Y, Tang D, Zheng H, Lu D Q, Hu W 2013 Acta Phys. Sin. 62 044214 (in Chinese) [高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍 2013 物理学报 62 044214]
[19] Du Y J, Xie X T, Yang Z Y, Bai J T 2015 Acta Phys. Sin. 64 064202 (in Chinese) [杜英杰, 谢小涛, 杨战营, 白晋涛 2015 物理学报 64 064202]
[20] Zhong W P, Huang H 1995 Acta Opt. Sin. 15 202 (in Chinese) [钟卫平, 黄辉1995光学学报 15 202]
[21] Jiang J H, Li Z P 2004 Acta Phys. Sin. 53 2991 (in Chinese) [江金环, 李子平 2004 物理学报 53 2991]
[22] Goldstein H 1950 Classical Mechanics (Cambridge, MA:Addison-Wesley) pp68-96
[23] Wang Z X, Guo D R 2000 Introduction to Special Function (Beijing:Peking University Press) pp334-415 (in Chinese) [王竹溪, 郭敦仁 2000 特殊函数概论(北京:北京大学出版社)第337–415页]
-
[1] Harris S E 1997 Phys. Today 50 36
[2] Fleischhauer M, Imamoglu A, Marangos J P 2009 Rev. Mod. Phys. 77 633
[3] Liu S Y, Zheng B S, Li H M, Liu X C, Liu S B 2015 Chin. Phys. B 24 084204
[4] Niakan N, Askari M, Zakery A 2012 J. Opt. Soc. Am. B 29 2329
[5] Xu Z X, Li S L, Yin X X, Zhao H X, Liu L L 2017 Sci. Rep. 7 6098
[6] Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904
[7] Rose H A, Mounaix P 2011 Phys. Plasmas 18 042109
[8] Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201]
[9] Qi X Y, Cao Z, Bai J T 2013 Acta Phys. Sin. 62 064217 (in Chinese) [齐新元, 曹政, 白晋涛 2013 物理学报 62 064217]
[10] Zhang L S, Yang L J, Li X L, Han L, Li X W, Guo Q L, Fu G S 2007 Acta Opt. Sin. 27 1305 (in Chinese) [张连水, 杨丽君, 李晓莉, 韩理, 李晓苇, 郭庆林, 傅广生 2007 光学学报 27 1305]
[11] Li X L, Zhang L S, Yang B Z, Yang L J 2010 Acta Phys. Sin. 59 7008 (in Chinese) [李晓莉, 张连水, 杨宝柱, 杨丽君 2010 物理学报 59 7008]
[12] Wang L, Hu X M 2004 Acta Phys. Sin. 53 2551 (in Chinese) [王丽, 胡响明 2004 物理学报 53 2551]
[13] Li X L, Shang Y X, Sun J 2013 Acta Phys. Sin. 62 064202 (in Chinese) [李晓莉, 尚雅轩, 孙江 2013 物理学报 62 064202]
[14] Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta Phys. Sin. 66 034202 (in Chinese) [唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202]
[15] Zhu K Z, Jia W G, Zhang K, Yu Y, Zhang J P 2016 Acta Phys. Sin. 65 074204 (in Chinese) [朱坤占, 贾维国, 张魁, 于宇, 张俊萍 2016 物理学报 65 074204]
[16] Xi T T, Zhang J, Lu X, Hao Z Q, Yang H, Dong Q L, Wu H C 2006 Chin. Phys. 15 2025
[17] Ponomarenko S A, Agrawal G P 2006 Phys. Rev. Lett. 97 013901
[18] Gao X H, Zhang C Y, Tang D, Zheng H, Lu D Q, Hu W 2013 Acta Phys. Sin. 62 044214 (in Chinese) [高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍 2013 物理学报 62 044214]
[19] Du Y J, Xie X T, Yang Z Y, Bai J T 2015 Acta Phys. Sin. 64 064202 (in Chinese) [杜英杰, 谢小涛, 杨战营, 白晋涛 2015 物理学报 64 064202]
[20] Zhong W P, Huang H 1995 Acta Opt. Sin. 15 202 (in Chinese) [钟卫平, 黄辉1995光学学报 15 202]
[21] Jiang J H, Li Z P 2004 Acta Phys. Sin. 53 2991 (in Chinese) [江金环, 李子平 2004 物理学报 53 2991]
[22] Goldstein H 1950 Classical Mechanics (Cambridge, MA:Addison-Wesley) pp68-96
[23] Wang Z X, Guo D R 2000 Introduction to Special Function (Beijing:Peking University Press) pp334-415 (in Chinese) [王竹溪, 郭敦仁 2000 特殊函数概论(北京:北京大学出版社)第337–415页]
计量
- 文章访问数: 5928
- PDF下载量: 135
- 被引次数: 0