搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子环境中带电体能量的Collin变分

谭康伯 路宏敏 苏涛

引用本文:
Citation:

等离子环境中带电体能量的Collin变分

谭康伯, 路宏敏, 苏涛

Collin variational study of charged conductors' energy in plasma environment

Tan Kang-Bo, Lu Hong-Min, Su Tao
PDF
导出引用
  • 基于系统性电磁兼容的考虑,对等离子环境中在轨航天器导体充放电现象中的能量特征进行了变分研究.通过电磁Collin原理,对等离子环境中导体系统几何尺度与所带电能的变分联系进行了理论分析.在此基础上,推广了更具一般性的数值估值分析方法,并对复杂导体系统电磁参数、等离子环境特征与系统能量间的关系进行了实例分析.研究结果对于等离子环境中复杂带电体的能量控制及相关的电磁环境效应与防护等研究具有积极意义.
    Plasma, as a special state of matter, has an effect on its inner conductors. Practically in the plasma environment, the effect may induce surface to charge and discharge, and may degrade the performance of spacecraft. Therefore, this effect needs to be further studied in the electromagnetic compatibility. The energy in a conductors' system is a key factor of the effect, which can also be used to depict the system consisting of relevant conductors and plasma environment. In order to investigate the essence of the system, the variational method is adopted. So with considering the electromagnetic compatibility and protection of this system, the energy of related conductors should be estimated by the theoretical method in the plasma environment. In the stochastic movement, electrons are faster than the irons. Therefore, the negative energy is cumulated. Considering the definition of capacitance, the system energy can be represented by the conductor capacitance and charging potential. Meanwhile, from the plasma kinetic theory, the potential can be obtained in the steady state. Thus, the relations among electromagnetic parameters of conductors, environmental features of plasma, and systematic energy are established, from which the corresponding Collin principle is also investigated. The principle indicates the system essence in the complex electromagnetic environment. In order to illustrate the utility of the variational principle, a simple cubic model is theoretically analyzed directly. From the typical instance, the relation between the geometric dimension and electric energy is illustrated, which is in consistence with the results in the early literature. The relation between secondary electrons and systematic energy is also analyzed. Starting from these theoretical investigations, in order to estimate the complicated structures, the analysis needs to be generalized further. With the assistance of discrete technology, the numerical method is established for analyzing the system energy of the complex conductive system in plasma environment. The generalized method is based on the equation with integral operator, in the calculation of which the method of moment is practically employed. As an application, the estimated energy of cube in plasma environment is compared with the theoretical estimation and the numerical estimation, which are in good agreement with each other. And then a composited structure is numerically analyzed. Obviously, the vairational analysis is beneficial to investigating the physical and principal regulation for conductors in the plasma environment, and the generalized method has wide potential applications in controlling the energy of complex charged conductors, electromagnetic protection, compatibility engineering in plasma environment, etc.
      通信作者: 谭康伯, kbtan@mail.xidian.edu.cn
      Corresponding author: Tan Kang-Bo, kbtan@mail.xidian.edu.cn
    [1]

    Higgins A B, Starling R L C, Gtz D, Mereghetti S, Wiersema K, Maccarone T, Osborne J P, Tanvir N R, O'Brien P T, Bird A J, Rowlinson A, Gehrels N 2017 MNRAS 470 314

    [2]

    Chen F F 2006 Introduction to Plasma Physics and Controlled Fusion (New York: Springer) pp120-203

    [3]

    Hu T P, Luo Q 2007 Chin. Phys. B 16 179

    [4]

    Liu W Z, Wang H, Zhang D J, Zhang J 2014 Plasma Sci. Technol. 16 344

    [5]

    Jiao J, Tong J S, Ma C G, Guo J Y, Bo Y, Zhao Q 2018 Acta Phys. Sin. 67 015202 (in Chinese)[焦蛟, 童继生, 马春光, 郭佶玙, 薄勇, 赵青 2018 物理学报 67 015202]

    [6]

    Ma H J, Wang G L, Luo J, Liu L P, Pan D X, Zhang J, Xing Y L, Tang F 2018 Acta Phys. Sin. 67 025201 (in Chinese)[马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞 2018 物理学报 67 025201]

    [7]

    Li Q, Chen Q, Zhong J 2018 Acta Phys. Sin. 67 027303 (in Chinese)[李群, 陈谦, 种景 2018 物理学报 67 027303]

    [8]

    Cao J B, Wang X Y, Zhou G C, Chen T 2000 Chin. J. Geophys. 43 459 (in Chinese)[曹晋滨, 汪学毅, 周国成, 陈涛 2000 地球物理学报 43 459]

    [9]

    Cai M H, Han J W, Li X Y, Li H W, Zhang Z L 2009 Acta Phys. Sin. 58 6659 (in Chinese)[蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力 2009 物理学报 58 6659]

    [10]

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 961 (in Chinese)[黄建国, 陈东 2004 物理学报 53 961]

    [11]

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 1611 (in Chinese)[黄建国, 陈东 2004 物理学报 53 1611]

    [12]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese)[黄建国, 韩建伟 2010 物理学报 59 2907]

    [13]

    Huang B C, Tong J Y 2010 Space Environment Engineering (Beijing: Chinese Science and Technology Press) p451 (in Chinese)[黄本诚, 童靖宇 2010 空间环境工程学(北京: 中国科学技术出版社)第451页]

    [14]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149401 (in Chinese)[曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149401]

    [15]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149402 (in Chinese)[曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149402]

    [16]

    Witze A 2016 Nature 539 15

    [17]

    Goldstein H 1950 Classical Mechanics (Cambridge, MA: Addison-Wesley) pp68-96

    [18]

    Courant R, Hilbert D (translated by Qian M, Guo D R) 1958 Methods of Mathematical Physics vol. I (Beijing: Science Press) p129-210 (in Chinese)[柯朗 R, 希尔伯特 D 著 (钱敏, 郭敦仁 译) 1958 数学物理方法 卷I (北京: 科学出版社)第129210页]

    [19]

    Chien W Z 2000 Applications of Green Functions and Variational Methods in Electromagnetic Field and Wave Computation (Shanghai: Shanghai University Press) pp1-85 (in Chinese)[钱伟长 2000 格林函数和变分法在电磁场和电磁波计算中的应用(上海: 上海大学出版社)第185页]

    [20]

    Mei F X 1988 Special Problems of Analytical Mechanics (Beijing: Beijing Institute of Technology Press) pp68-158 (in Chinese)[梅凤翔 1988 分析力学专题(北京: 北京工业学院出版社)第68158页]

    [21]

    Ding G T 2011 Acta Phys. Sin. 60 044503 (in Chinese)[丁光涛 2011 物理学报 60 044503]

    [22]

    Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill) pp104-136

    [23]

    Jackson J D 1975 Classical Electrodynamics (New York: Wiley) pp236-240

    [24]

    Collin R E 1960 Field Theory of Guided Waves (New York: McGraw-Hill) pp338-348

    [25]

    Liang C H, Su T, Wan J X 2004 Acta Phys. Sin. 53 0001 (in Chinese)[梁昌洪, 苏涛, 万继响 2004 物理学报 53 0001]

    [26]

    Murali S 2000 J. Electron Spectrosc. Relat. Phenom. 106 93

    [27]

    Kazami Y, Junichiro K, Norio O, Michikazu K, Naoki H, Ryuji S, Kenichirou S, Takeshi T 2009 Appl. Surf. Sci. 256 958

    [28]

    Harrington R F 1993 Field Computation by Moment Methods (New York: Wiley-IEEE Press) pp1-50

  • [1]

    Higgins A B, Starling R L C, Gtz D, Mereghetti S, Wiersema K, Maccarone T, Osborne J P, Tanvir N R, O'Brien P T, Bird A J, Rowlinson A, Gehrels N 2017 MNRAS 470 314

    [2]

    Chen F F 2006 Introduction to Plasma Physics and Controlled Fusion (New York: Springer) pp120-203

    [3]

    Hu T P, Luo Q 2007 Chin. Phys. B 16 179

    [4]

    Liu W Z, Wang H, Zhang D J, Zhang J 2014 Plasma Sci. Technol. 16 344

    [5]

    Jiao J, Tong J S, Ma C G, Guo J Y, Bo Y, Zhao Q 2018 Acta Phys. Sin. 67 015202 (in Chinese)[焦蛟, 童继生, 马春光, 郭佶玙, 薄勇, 赵青 2018 物理学报 67 015202]

    [6]

    Ma H J, Wang G L, Luo J, Liu L P, Pan D X, Zhang J, Xing Y L, Tang F 2018 Acta Phys. Sin. 67 025201 (in Chinese)[马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞 2018 物理学报 67 025201]

    [7]

    Li Q, Chen Q, Zhong J 2018 Acta Phys. Sin. 67 027303 (in Chinese)[李群, 陈谦, 种景 2018 物理学报 67 027303]

    [8]

    Cao J B, Wang X Y, Zhou G C, Chen T 2000 Chin. J. Geophys. 43 459 (in Chinese)[曹晋滨, 汪学毅, 周国成, 陈涛 2000 地球物理学报 43 459]

    [9]

    Cai M H, Han J W, Li X Y, Li H W, Zhang Z L 2009 Acta Phys. Sin. 58 6659 (in Chinese)[蔡明辉, 韩建伟, 李小银, 李宏伟, 张振力 2009 物理学报 58 6659]

    [10]

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 961 (in Chinese)[黄建国, 陈东 2004 物理学报 53 961]

    [11]

    Huang J G, Chen D 2004 Acta Phys. Sin. 53 1611 (in Chinese)[黄建国, 陈东 2004 物理学报 53 1611]

    [12]

    Huang J G, Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese)[黄建国, 韩建伟 2010 物理学报 59 2907]

    [13]

    Huang B C, Tong J Y 2010 Space Environment Engineering (Beijing: Chinese Science and Technology Press) p451 (in Chinese)[黄本诚, 童靖宇 2010 空间环境工程学(北京: 中国科学技术出版社)第451页]

    [14]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149401 (in Chinese)[曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149401]

    [15]

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 149402 (in Chinese)[曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 149402]

    [16]

    Witze A 2016 Nature 539 15

    [17]

    Goldstein H 1950 Classical Mechanics (Cambridge, MA: Addison-Wesley) pp68-96

    [18]

    Courant R, Hilbert D (translated by Qian M, Guo D R) 1958 Methods of Mathematical Physics vol. I (Beijing: Science Press) p129-210 (in Chinese)[柯朗 R, 希尔伯特 D 著 (钱敏, 郭敦仁 译) 1958 数学物理方法 卷I (北京: 科学出版社)第129210页]

    [19]

    Chien W Z 2000 Applications of Green Functions and Variational Methods in Electromagnetic Field and Wave Computation (Shanghai: Shanghai University Press) pp1-85 (in Chinese)[钱伟长 2000 格林函数和变分法在电磁场和电磁波计算中的应用(上海: 上海大学出版社)第185页]

    [20]

    Mei F X 1988 Special Problems of Analytical Mechanics (Beijing: Beijing Institute of Technology Press) pp68-158 (in Chinese)[梅凤翔 1988 分析力学专题(北京: 北京工业学院出版社)第68158页]

    [21]

    Ding G T 2011 Acta Phys. Sin. 60 044503 (in Chinese)[丁光涛 2011 物理学报 60 044503]

    [22]

    Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill) pp104-136

    [23]

    Jackson J D 1975 Classical Electrodynamics (New York: Wiley) pp236-240

    [24]

    Collin R E 1960 Field Theory of Guided Waves (New York: McGraw-Hill) pp338-348

    [25]

    Liang C H, Su T, Wan J X 2004 Acta Phys. Sin. 53 0001 (in Chinese)[梁昌洪, 苏涛, 万继响 2004 物理学报 53 0001]

    [26]

    Murali S 2000 J. Electron Spectrosc. Relat. Phenom. 106 93

    [27]

    Kazami Y, Junichiro K, Norio O, Michikazu K, Naoki H, Ryuji S, Kenichirou S, Takeshi T 2009 Appl. Surf. Sci. 256 958

    [28]

    Harrington R F 1993 Field Computation by Moment Methods (New York: Wiley-IEEE Press) pp1-50

  • [1] 杜泊船, 田圃. 分子体系自由能地貌图的变分分析及AI算法实现. 物理学报, 2024, 73(6): 068702. doi: 10.7498/aps.73.20231800
    [2] 谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲. 电磁诱导透明暗孤子的耗散变分束缚分析. 物理学报, 2018, 67(6): 064207. doi: 10.7498/aps.67.20172567
    [3] 陈书赢, 王海斗, 马国政, 康嘉杰, 徐滨士. 等离子喷涂层原生性孔隙几何结构的分形及统计特性. 物理学报, 2015, 64(24): 240504. doi: 10.7498/aps.64.240504
    [4] 陈书赢, 王海斗, 徐滨士, 康嘉杰. 基于分形理论的超音速等离子喷涂层界面结合行为研究. 物理学报, 2014, 63(15): 156801. doi: 10.7498/aps.63.156801
    [5] 杨敏, 李小平, 刘彦明, 石磊, 谢楷. 信号在时变等离子体中的传播特性. 物理学报, 2014, 63(8): 085201. doi: 10.7498/aps.63.085201
    [6] 邹丹旦, 杨维紘. 双流体等离子体模型的动力学可容变分. 物理学报, 2014, 63(3): 030401. doi: 10.7498/aps.63.030401
    [7] 杨利霞, 沈丹华, 施卫东. 三维时变等离子体目标的电磁散射特性研究. 物理学报, 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [8] 朱希睿, 孟续军, 田明锋, 姜旻昊. 中低温等离子体原子能量的分波法计算. 物理学报, 2007, 56(4): 2053-2060. doi: 10.7498/aps.56.2053
    [9] 张 颖, 陈其峰, 顾云军, 蔡灵仓, 卢铁城. 部分电离稠密氦等离子体物态方程的自洽变分计算. 物理学报, 2007, 56(3): 1318-1324. doi: 10.7498/aps.56.1318
    [10] 谭康伯, 梁昌洪. 有耗孤子的最小作用量原理及其在二维光子带隙结构中的应用. 物理学报, 2007, 56(5): 2704-2708. doi: 10.7498/aps.56.2704
    [11] 盛正卯, 王 庸, 马 健, 郑思波. 静电波对磁化等离子体的共振加热的理论及数值模拟研究. 物理学报, 2006, 55(3): 1301-1306. doi: 10.7498/aps.55.1301
    [12] 李雪梅, 沈百飞, 查学军, 方宗豹, 张晓梅, 金张英, 王凤超. 高能离子在稠密等离子体中的传输和能量沉积. 物理学报, 2006, 55(5): 2313-2321. doi: 10.7498/aps.55.2313
    [13] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正. 物理学报, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [14] 田贵花, 赵 峥. 一类类光测地线的加速度. 物理学报, 2004, 53(6): 1662-1664. doi: 10.7498/aps.53.1662
    [15] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [16] 江志明, 徐至展, 张伟清, 林礼煌, 陈时胜. 激光产生等离子体中密度轮廓的变陡和凹陷现象的研究. 物理学报, 1988, 37(12): 2048-2052. doi: 10.7498/aps.37.2048
    [17] 陆全康, 陈之范. 各向异性等离子体中的静电屏蔽. 物理学报, 1982, 31(2): 252-257. doi: 10.7498/aps.31.252
    [18] 王德焴. 自由界面等离子体平衡的变分原理. 物理学报, 1980, 29(2): 233-240. doi: 10.7498/aps.29.233
    [19] 姚鑫兹, 祖钦信, 徐瑶, 高鹏, 何凤杰, 李宝环. 用激光散射法测量等离子体的电子温度和θ-收缩等离子体能量损失的研究. 物理学报, 1979, 28(6): 824-832. doi: 10.7498/aps.28.824
    [20] 芶清泉, 张开义. 應用变分波函数计算原子和离子的抗磁性的磁化率. 物理学报, 1953, 9(2): 93-109. doi: 10.7498/aps.9.93
计量
  • 文章访问数:  5312
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-20
  • 修回日期:  2018-08-03
  • 刊出日期:  2019-10-20

/

返回文章
返回