搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分形理论的超音速等离子喷涂层界面结合行为研究

陈书赢 王海斗 徐滨士 康嘉杰

引用本文:
Citation:

基于分形理论的超音速等离子喷涂层界面结合行为研究

陈书赢, 王海斗, 徐滨士, 康嘉杰

Investigation on the bonding behavior of the interface within the supersonic plasma sprayed coating system based on the fractal theory

Chen Shu-Ying, Wang Hai-Dou, Xu Bin-Shi, Kang Jia-Jie
PDF
导出引用
  • 为研究结合界面形貌与涂层体系结合强度之间的关系,采用超音速等离子喷涂设备制备Fe 基合金涂层,选用(Ni,Al)涂层作为黏接底层. 通过改变Ar气流量,获得不同粗糙表面的黏接底层. 采用对偶件拉伸法测量复合合金涂层体系的结合强度,同时引入分形理论对结合界面形貌进行定量表征,结果表明:黏接底层能显著提高涂层的结合强度,随着Ar气流量的升高,黏接底层表面分形维数不断降低,涂层体系的结合强度则呈现出先增大后减小的趋势.
    In order to investigate the relationship between the interfacial morphology of the coating system and its adhesion strength, the supersonic plasma spraying equipment is employed to fabricate Fe-based alloy coating. The (Ni, Al) coating is prepared as the undercoating with different flow of Ar gas, aiming at obtaining various rough morphologies. Interfacial morphologies of the coating system are quantificationally characterized by fractal dimension(FD). The pull-off method is used to test the adhesion strength. Result shows that the adhesion strength is obviously improved by fabricating an undercoating, and the FD of the interfacial morphology decreases with the increase of the flow rate of Ar gas, while the adhesion strength will be raised at the first beginning and then decreased to a certain value.
    • 基金项目: 国家杰出青年科学基金(批准号:51125023)、国家重点基础研究发展计划(批准号:2011CB013405)、国家自然科学基金(批准号:51275151)和北京市自然科学基金重大项目(批准号:3120001)资助的课题.
    • Funds: Project supported by the Distinguished Young Scholars of National Natural Science Foundation of China (NSFC) (Grant No. 51125023), the National Basic Research of China (Grant No. 2011CB013405), NSFC (Grant No. 51275151), Natural Science Foundation (NSF) of Beijing, China (Grant No. 3120001).
    [1]

    Blink J, Farmer J, Choi J, Saw C 2009 Metallurgical and Materials Transaction A 40 1344

    [2]
    [3]

    Piao Z Y, Xu B S, Wang H D, Wen D H 2013 Applied. Surface Science 266 420

    [4]
    [5]
    [6]

    Stewart S, Ahmed R 2003 Surface & Coatings Technology 172 204

    [7]
    [8]

    Stewart S, Ahmed R 2005 Surface & Coatings Technology 190 171

    [9]

    Masakazu O, Satoshi Y, Yasuhiro Y, Kazuhiro O, Hiroyuki W, Masayuki A 2013 International Journal of Fatigue 53 33

    [10]
    [11]

    Zhang Y K, Kong D J, Feng A X, Lu J Z, Zhang L H, Ge T 2006 Acta Phys. Sin. 55 2897 (in Chinese) [张永康, 孔德军, 冯爱新, 鲁金忠, 张雷洪, 葛涛 2006 物理学报 55 2897]

    [12]
    [13]

    Zhang Y K, Kong D J, Feng A X, Lu J Z, Ge T 2006 Acta Phys. Sin. 55 6008 (in Chinese) [张永康, 孔德军, 冯爱新, 鲁金忠, 葛涛 2006 物理学报 55 6008]

    [14]
    [15]

    Li J X, Zhang Y M, Wu G F, Han Y, Ma X J 2008 Rare Metal Materials and Engineering 37 495 (in Chinese) [李健学, 张玉梅, 吴国锋, 憨勇, 马晓洁 2008 稀有金属材料与工程 37 495]

    [16]
    [17]

    WU H, Li H J, Lei Q, Fu Q G, Ma C, Yao D J, Wang Y J, Sun C, Wei J F, Han Z H 2011 Applied Surface Science 257 5566

    [18]
    [19]

    Lima C R C, Guilemany J M 2007 Surface & coatings Technology 201 4694

    [20]
    [21]

    Abdullah C K, Hasan D, Yilmaz K 2013 Engineering Failure Analysis 32 16

    [22]
    [23]

    Liang T X, Liu Y Q, Zhang S J 2004 Rare Metal Materials and Engineering 33 1341 (in Chinese) [梁彤祥, 刘杨秋, 张世骥 2004 稀有金属材料与工程 33 1341]

    [24]
    [25]

    Xu N, Zhang J, Hou W L, Quan M X, Li R D, Chang X C 2009 Acta Metallurgica Sinica 45 943 (in Chinese) [徐娜, 张甲, 候万良, 全明秀, 李荣德, 常新春 2009 金属学报 45 943]

    [26]
    [27]
    [28]

    Gu L J, Fan X Z, Zhao Y, Zou B L, Wang Y, Zhao S M, Cao X Q 2012 Surface & Coating Technology 206 4403

    [29]
    [30]

    Kang J J, Xu B S, Wang H D, Wang C B 2014 Tribology International 73 47

    [31]

    Chen X M, Yi D Q, Li X P, Wang Y R, Liu H Q 2011 Materials Science and Engineering of Powder Metallurgy 26 464 (in Chinese) [陈响明, 易丹青, 李秀萍, 王以任, 刘会群 2011 粉末冶金材料科学与工程 26 464]

    [32]
    [33]

    Wang Q, Lan D Y, Xuan Z Z, Liu C H 2007 Transactions of the China Welding Institution 28 61 (in Chinese) [王强, 兰冬云, 宣兆志, 刘成会 2007 焊接学报 28 61]

    [34]
    [35]
    [36]

    Mohammadi Z, Moayyed A A Ziaei, Sheikh A M 2007 Journal of Materials Processing Technology 194 15

    [37]
    [38]

    Bahbou M F, Nylén P, Wigren J 2004 Journal of Thermal Spray Technology 13 508

    [39]
    [40]

    Sen D, Naveen M C, Rao D S, Sundararajan G 2010 Journal of Thermal Spray Technology 19 805

    [41]

    Shigeyasu A, Tohru H 2000 Surface & Coatings Technology 130 158

    [42]
    [43]
    [44]

    Wang L Y, Wang H G, Hua S C, Cao X P 2006 Rare Metal Materials and Engineering 35 291 (in Chinese) [汪刘应, 王汉功, 华绍春, 曹小平 2006 稀有金属材料与工程 35 291]

    [45]

    Hua S C, Wang H G, Wang L Y, Zhang W, Liu G 2008 Acta Phys. Sin. 57 1241 (in Chinese) [华绍春, 王汉功, 汪刘应, 张武, 刘顾 2008 物理学报 57 1241]

    [46]
    [47]

    Cai J C 2014 Chin. Phys. B 23 044701

    [48]
    [49]
    [50]

    Li X F, Chu Y D, Zhang H 2012 Chin. Phys. B 21 030203

    [51]
    [52]

    Guo L, Cai X 2009 Chin. Phys. Lett. 26 088901

    [53]

    Bi F, Li C F 2013 Chin. Phys. Lett. 30 010306

    [54]
    [55]
    [56]

    Tang Z L, Yang X N, Li J D 2011 Acta Phys. Sin. 60 056401 (in Chinese) [唐智灵, 杨小牛, 李建东 2011 物理学报 60 056401]

    [57]
    [58]

    Huo Y L, Zhang G S, Lv S H, Yuan P 2013 Acta Phys. Sin. 62 059201 (in Chinese) [火元莲, 张广庶, 吕世华, 袁萍 2013 物理学报 62 059201]

    [59]
    [60]

    Peng Y, Zhang C, Zhou H, Liu L 2013 Surface & Coatings Technology 218 17

    [61]
    [62]

    Li L, Kharas B, Zhang H, Sampath S 2007 Materials Science and Engineering A 456 35

    [63]

    Shigeyasu A, Tohru H 1998 Surface & Coatings Technology 102 132

    [64]
    [65]

    Shigeyasu A, Hiroshi Y 1996 Surface & Coatings Technology 78 50

  • [1]

    Blink J, Farmer J, Choi J, Saw C 2009 Metallurgical and Materials Transaction A 40 1344

    [2]
    [3]

    Piao Z Y, Xu B S, Wang H D, Wen D H 2013 Applied. Surface Science 266 420

    [4]
    [5]
    [6]

    Stewart S, Ahmed R 2003 Surface & Coatings Technology 172 204

    [7]
    [8]

    Stewart S, Ahmed R 2005 Surface & Coatings Technology 190 171

    [9]

    Masakazu O, Satoshi Y, Yasuhiro Y, Kazuhiro O, Hiroyuki W, Masayuki A 2013 International Journal of Fatigue 53 33

    [10]
    [11]

    Zhang Y K, Kong D J, Feng A X, Lu J Z, Zhang L H, Ge T 2006 Acta Phys. Sin. 55 2897 (in Chinese) [张永康, 孔德军, 冯爱新, 鲁金忠, 张雷洪, 葛涛 2006 物理学报 55 2897]

    [12]
    [13]

    Zhang Y K, Kong D J, Feng A X, Lu J Z, Ge T 2006 Acta Phys. Sin. 55 6008 (in Chinese) [张永康, 孔德军, 冯爱新, 鲁金忠, 葛涛 2006 物理学报 55 6008]

    [14]
    [15]

    Li J X, Zhang Y M, Wu G F, Han Y, Ma X J 2008 Rare Metal Materials and Engineering 37 495 (in Chinese) [李健学, 张玉梅, 吴国锋, 憨勇, 马晓洁 2008 稀有金属材料与工程 37 495]

    [16]
    [17]

    WU H, Li H J, Lei Q, Fu Q G, Ma C, Yao D J, Wang Y J, Sun C, Wei J F, Han Z H 2011 Applied Surface Science 257 5566

    [18]
    [19]

    Lima C R C, Guilemany J M 2007 Surface & coatings Technology 201 4694

    [20]
    [21]

    Abdullah C K, Hasan D, Yilmaz K 2013 Engineering Failure Analysis 32 16

    [22]
    [23]

    Liang T X, Liu Y Q, Zhang S J 2004 Rare Metal Materials and Engineering 33 1341 (in Chinese) [梁彤祥, 刘杨秋, 张世骥 2004 稀有金属材料与工程 33 1341]

    [24]
    [25]

    Xu N, Zhang J, Hou W L, Quan M X, Li R D, Chang X C 2009 Acta Metallurgica Sinica 45 943 (in Chinese) [徐娜, 张甲, 候万良, 全明秀, 李荣德, 常新春 2009 金属学报 45 943]

    [26]
    [27]
    [28]

    Gu L J, Fan X Z, Zhao Y, Zou B L, Wang Y, Zhao S M, Cao X Q 2012 Surface & Coating Technology 206 4403

    [29]
    [30]

    Kang J J, Xu B S, Wang H D, Wang C B 2014 Tribology International 73 47

    [31]

    Chen X M, Yi D Q, Li X P, Wang Y R, Liu H Q 2011 Materials Science and Engineering of Powder Metallurgy 26 464 (in Chinese) [陈响明, 易丹青, 李秀萍, 王以任, 刘会群 2011 粉末冶金材料科学与工程 26 464]

    [32]
    [33]

    Wang Q, Lan D Y, Xuan Z Z, Liu C H 2007 Transactions of the China Welding Institution 28 61 (in Chinese) [王强, 兰冬云, 宣兆志, 刘成会 2007 焊接学报 28 61]

    [34]
    [35]
    [36]

    Mohammadi Z, Moayyed A A Ziaei, Sheikh A M 2007 Journal of Materials Processing Technology 194 15

    [37]
    [38]

    Bahbou M F, Nylén P, Wigren J 2004 Journal of Thermal Spray Technology 13 508

    [39]
    [40]

    Sen D, Naveen M C, Rao D S, Sundararajan G 2010 Journal of Thermal Spray Technology 19 805

    [41]

    Shigeyasu A, Tohru H 2000 Surface & Coatings Technology 130 158

    [42]
    [43]
    [44]

    Wang L Y, Wang H G, Hua S C, Cao X P 2006 Rare Metal Materials and Engineering 35 291 (in Chinese) [汪刘应, 王汉功, 华绍春, 曹小平 2006 稀有金属材料与工程 35 291]

    [45]

    Hua S C, Wang H G, Wang L Y, Zhang W, Liu G 2008 Acta Phys. Sin. 57 1241 (in Chinese) [华绍春, 王汉功, 汪刘应, 张武, 刘顾 2008 物理学报 57 1241]

    [46]
    [47]

    Cai J C 2014 Chin. Phys. B 23 044701

    [48]
    [49]
    [50]

    Li X F, Chu Y D, Zhang H 2012 Chin. Phys. B 21 030203

    [51]
    [52]

    Guo L, Cai X 2009 Chin. Phys. Lett. 26 088901

    [53]

    Bi F, Li C F 2013 Chin. Phys. Lett. 30 010306

    [54]
    [55]
    [56]

    Tang Z L, Yang X N, Li J D 2011 Acta Phys. Sin. 60 056401 (in Chinese) [唐智灵, 杨小牛, 李建东 2011 物理学报 60 056401]

    [57]
    [58]

    Huo Y L, Zhang G S, Lv S H, Yuan P 2013 Acta Phys. Sin. 62 059201 (in Chinese) [火元莲, 张广庶, 吕世华, 袁萍 2013 物理学报 62 059201]

    [59]
    [60]

    Peng Y, Zhang C, Zhou H, Liu L 2013 Surface & Coatings Technology 218 17

    [61]
    [62]

    Li L, Kharas B, Zhang H, Sampath S 2007 Materials Science and Engineering A 456 35

    [63]

    Shigeyasu A, Tohru H 1998 Surface & Coatings Technology 102 132

    [64]
    [65]

    Shigeyasu A, Hiroshi Y 1996 Surface & Coatings Technology 78 50

  • [1] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [2] 陈书赢, 王海斗, 马国政, 康嘉杰, 徐滨士. 等离子喷涂层原生性孔隙几何结构的分形及统计特性. 物理学报, 2015, 64(24): 240504. doi: 10.7498/aps.64.240504
    [3] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [4] 蔡建超, 郭士礼, 游利军, 胡祥云. 裂缝-孔隙型双重介质油藏渗吸机理的分形分析. 物理学报, 2013, 62(1): 014701. doi: 10.7498/aps.62.014701
    [5] 尚慧琳. 受迫Holmes-Duffing系统安全域分形及时滞速度反馈控制. 物理学报, 2012, 61(18): 180506. doi: 10.7498/aps.61.180506
    [6] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法. 物理学报, 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [7] 张敏, 王小霞, 罗积润, 廖显恒. 等离子喷涂含钪氧化物阴极制备及发射特性研究. 物理学报, 2012, 61(7): 077901. doi: 10.7498/aps.61.077901
    [8] 杨娟, 卞保民, 闫振纲, 王春勇, 李振华. 典型随机信号特征参数统计分布的分形特性. 物理学报, 2011, 60(10): 100506. doi: 10.7498/aps.60.100506
    [9] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征. 物理学报, 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [10] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制. 物理学报, 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [11] 刘耀民, 刘中良, 黄玲艳. 分形理论结合相变动力学的冷表面结霜过程模拟. 物理学报, 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [12] 姜泽辉, 赵海发, 郑瑞华. 完全非弹性蹦球倍周期运动的分形特征. 物理学报, 2009, 58(11): 7579-7583. doi: 10.7498/aps.58.7579
    [13] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [14] 华绍春, 王汉功, 汪刘应, 刘顾, 赵瑞星, 姚建勋. 微弧等离子喷涂碳纳米管/纳米Al2O3-TiO2复合涂层的吸波性能研究. 物理学报, 2009, 58(9): 6534-6541. doi: 10.7498/aps.58.6534
    [15] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [16] 华绍春, 王汉功, 汪刘应, 张 武, 刘 顾. 纳米AT13陶瓷喷涂层结合强度的分形维数表征. 物理学报, 2008, 57(2): 1241-1245. doi: 10.7498/aps.57.1241
    [17] 李 彤, 商朋见. 多重分形在掌纹识别中的研究. 物理学报, 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [18] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究. 物理学报, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [19] 刘海文, 孙晓玮, 李征帆, 钱 蓉, 周 旻. 基于分形特征和双层光子带隙结构的宽阻带低通滤波器. 物理学报, 2003, 52(12): 3082-3086. doi: 10.7498/aps.52.3082
    [20] 齐红基, 黄立华, 邵建达, 范正修. Kuramoto-Sivashinsky与Karda-Parisi-Zhang模型中生长界面分形特性研究. 物理学报, 2003, 52(11): 2743-2749. doi: 10.7498/aps.52.2743
计量
  • 文章访问数:  2931
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-25
  • 修回日期:  2014-04-07
  • 刊出日期:  2014-08-05

基于分形理论的超音速等离子喷涂层界面结合行为研究

  • 1. 装甲兵工程学院, 装备再制造技术国防科技重点实验室, 北京 100072;
  • 2. 中国地质大学(北京), 工程技术学院, 北京 100083
    基金项目: 国家杰出青年科学基金(批准号:51125023)、国家重点基础研究发展计划(批准号:2011CB013405)、国家自然科学基金(批准号:51275151)和北京市自然科学基金重大项目(批准号:3120001)资助的课题.

摘要: 为研究结合界面形貌与涂层体系结合强度之间的关系,采用超音速等离子喷涂设备制备Fe 基合金涂层,选用(Ni,Al)涂层作为黏接底层. 通过改变Ar气流量,获得不同粗糙表面的黏接底层. 采用对偶件拉伸法测量复合合金涂层体系的结合强度,同时引入分形理论对结合界面形貌进行定量表征,结果表明:黏接底层能显著提高涂层的结合强度,随着Ar气流量的升高,黏接底层表面分形维数不断降低,涂层体系的结合强度则呈现出先增大后减小的趋势.

English Abstract

参考文献 (65)

目录

    /

    返回文章
    返回