搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频电场缀饰下铯Rydberg原子的电磁感应透明光谱

韩玉龙 刘邦 张侃 孙金芳 孙辉 丁冬生

引用本文:
Citation:

射频电场缀饰下铯Rydberg原子的电磁感应透明光谱

韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生

Electromagnetically induced transparency spectroscopy of cesium Rydberg atoms in radio-frequency fields

Han Yu-Long, Liu Bang, Zhang Kan, Sun Jin-Fang, Sun Hui, Ding Dong-Sheng
PDF
导出引用
  • 采用全红外光激发Rydberg原子的方案,选择探测光(852 nm)、缀饰光(1470 nm)和耦合光(780 nm),利用三光子激发方式实现了Cs原子Rydberg态(49P3/2)的制备.实验上,观测到射频电场作用下7S1/2 → 49P3/2Rydberg 跃迁形成的电磁感应透明(EIT)效应,实现对Rydberg 原子的光学探测,根据EIT光谱的变化来探究射频电场的幅度和频率对光谱的影响.研究表明,随着射频电场幅度的增强,观察到光谱现象从越发明显的ac Stark 能移逐步过渡到复杂混合态的多个调制边带,并根据EIT主峰的频移进一步讨论频率对铯泡中电场屏蔽的影响.采用将低频电场调制到射频电场的方式,实现了50 Hz~1 kHz范围内电场的解调,并对解调信号的幅度和频率进行拟合,保真度达到95%.研究结果对光谱探测和低频电场的可溯源测量等提供有价值的参考.
    The large electric dipole moment of the Rydberg atom allows strong coupling to weak electric fields and is widely used in electric field measurements because of its reproducibility, precision and stability. The combination of Rydberg atoms and electromagnetically induced transparency (EIT) technology has been used for the detection and characterisation of radio-frequency (RF) electric fields. In this work, the preparation of the Rydberg state (49P3/2) of the Cs atom was achieved using three-photon excitation with a scheme of all-infrared light excitation of the Rydberg atom by selecting the probe light (852 nm), the dressing light (1470 nm) and the coupling light (780 nm). We have experimentally observed the electromagnetically induced transparency (EIT) spectra of the Rydberg states decorated with radio-frequency electric fields, which optically detects Rydberg atoms. The effect of the amplitude and frequency of the RF electric field on the spectrum is explored in the light of changes in the EIT spectrum. It has been demonstrated that in the region of weak electric field amplitude, only the ac Stark energy shift and spectral broadening occur. As the electric field is further enhanced, the sideband phenomenon occurs in both the primary and secondary peaks of the EIT. In the region of strong field, the Rydberg energy level produces a series of Floquet states with higher-order terms, as well as state shifting and mixing, resulting in asymmetry in the spectra of the EIT sideband peaks. We further discuss the study of the effect of frequency on the shielding effect of the Cs vapor cell based on the shift of the main peak of the EIT. The demodulation of the electric field in the range of 50 Hz ~ 1 kHz with a fidelity of 95% is achieved by using the modulation of the low-frequency electric field to the RF electric field. The results can provide valuable references for spectral detection and traceable measurements of low-frequency electric fields.
  • [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge:Cambridge University Press)

    [2]

    Adams C S, Pritchard J D, Shaffer J P 2020 Journal of Physics B:Atomic, Molecular and Optical Physics 53012002

    [3]

    Liu B, Zhang L, Liu Z, Deng Z, Ding D, Shi B, Guo G 2023 Electromagnetic Science 11

    [4]

    Yuan J, Yang W, Jing M, Zhang H, Jiao Y, Li W, Zhang L, Xiao L, Jia S 2023 Reports on Progress in Physics 86106001

    [5]

    Mohapatra A K, Jackson T R, Adams C S 2007 Physical Review Letters 98113003

    [6]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nature Physics 8819

    [7]

    Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017 Scientific Reports 742981

    [8]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 Journal of Physics B:Atomic, Molecular and Optical Physics 44184020

    [9]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Advances 9045030

    [10]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Physical Review Letters 111063001

    [11]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7164975

    [12]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nature Physics 16911

    [13]

    Artusio-Glimpse A, Simons M T, Prajapati N, Holloway C L 2022 IEEE Microwave Magazine 2344

    [14]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Applied Physics Letters 105024104

    [15]

    Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Applied Physics Letters 113094101

    [16]

    Meyer D H, Kunz P D, Cox K C 2021 Physical Review Applied 15014053

    [17]

    Zhang L-H, Liu Z-K, Liu B, Zhang Z-Y, Guo G-C, Ding D-S, Shi B-S 2022 Physical Review Applied 18014033

    [18]

    Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J, Qu J 2019 Opt. Express 278848

    [19]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 Journal of Applied Physics 129154503

    [20]

    Shaffer J, Kübler H 2018 A read-out enhancement for microwave electric field sensing with Rydberg atoms (Vol. 10674)(SPIE)

    [21]

    Ripka F, Amarloo H, Erskine J, Liu C, Ramirez-Serrano J, Keaveney J, Gillet G, Kübler H, Shaffer J 2021 Application-driven problems in Rydberg atom electrometry (Vol. 11700)(SPIE)

    [22]

    Liu B, Zhang L-H, Liu Z-K, Zhang Z-Y, Zhu Z-H, Gao W, Guo G-C, Ding D-S, Shi B-S 2022 Physical Review Applied 18014045

    [23]

    Hu J, Li H, Song R, Bai J, Jiao Y, Zhao J, Jia S 2022 Applied Physics Letters 121

    [24]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 373858

    [25]

    Xu J H, Gozzini A, Mango F, Alzetta G, Bernheim R A 1996 Physical Review A 543146

    [26]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 Journal of Physics B:Atomic, Molecular and Optical Physics 355141

    [27]

    Robertson E J, Šibalić N, Potvliege R M, Jones M P A 2021 Computer Physics Communications 261107814

    [28]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G, Gordon J A, Holloway C L 2014 Physical Review A 90043419

    [29]

    Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L, Holloway C L 2016 Physical Review Applied 5034003

    [30]

    Daschner R, Ritter R, Kübler H, Frühauf N, Kurz E, Löw R, Pfau T 2012 Opt. Lett. 372271

    [31]

    Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Physical Review A 86043415

    [32]

    Jau Y-Y, Carter T 2020 Physical Review Applied 13054034

  • [1] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, doi: 10.7498/aps.73.20231778
    [2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, doi: 10.7498/aps.72.20222059
    [3] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, doi: 10.7498/aps.72.20221582
    [4] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱. 物理学报, doi: 10.7498/aps.71.20211458
    [5] 樊佳蓓, 郝丽萍, 白景旭, 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的高灵敏微波探测与通信. 物理学报, doi: 10.7498/aps.70.20201401
    [6] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮. 基于Rydberg原子天线的太赫兹测量. 物理学报, doi: 10.7498/aps.70.20201870
    [7] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱. 物理学报, doi: 10.7498/aps.70.20210405
    [8] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n+1)S1/2双光子激发EIT-AT光谱. 物理学报, doi: 10.7498/aps.70.20211458
    [9] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, doi: 10.7498/aps.67.20181168
    [10] 樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂. Rydberg原子的微波电磁感应透明-Autler-Townes光谱. 物理学报, doi: 10.7498/aps.67.20172645
    [11] 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的超宽频带射频传感器. 物理学报, doi: 10.7498/aps.67.20172636
    [12] 薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂. 超冷铯Rydberg原子的Autler-Townes分裂. 物理学报, doi: 10.7498/aps.66.213201
    [13] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, doi: 10.7498/aps.66.093202
    [14] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, doi: 10.7498/aps.65.103201
    [15] 王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷nS Rydberg原子的态转移. 物理学报, doi: 10.7498/aps.62.093201
    [16] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉. 物理学报, doi: 10.7498/aps.62.013201
    [17] 车俊岭, 张好, 冯志刚, 张临杰, 赵建明, 贾锁堂. 70S超冷Cs Rydberg原子的动力学演化. 物理学报, doi: 10.7498/aps.61.043205
    [18] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, doi: 10.7498/aps.60.073202
    [19] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 物理学报, doi: 10.7498/aps.59.2401
    [20] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算. 物理学报, doi: 10.7498/aps.56.3198
计量
  • 文章访问数:  248
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-16

/

返回文章
返回