搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

里德伯原子幻零波长

刘智慧 刘逍娜 何军 刘瑶 苏楠 蔡婷 杜艺杰 王杰英 裴栋梁 王军民

引用本文:
Citation:

里德伯原子幻零波长

刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民

Tune-out wavelengths of Rydberg atoms

Liu Zhi-Hui, Liu Xiao-Na, He Jun, Liu Yao, Su Nan, Cai Ting, Du Yi-Jie, Wang Jie-Ying, Pei Dong-Liang, Wang Jun-Min
PDF
HTML
导出引用
  • 原子极化率反映其对外场的响应特性, 动态极化率等于零的外场波长称为零极化或幻零(tune-out)波长. 里德伯原子的tune-out波长计算较为困难, 本文设计室温气室里德伯原子测量装置, 基于调幅电磁感应透明(amplitude modulation electromagnetically induced transparency, AM-EIT)光谱技术实现tune-out波长测量. 实验采用双光子级联激发制备铯原子里德伯态, 利用阶梯型电磁感应透明(electromagnetically induced transparency, EIT)光谱实现里德伯原子量子态检测; 通过微波频率连续扫描测量里德伯原子AM-EIT信号; 在tune-out波长处, 邻近耦合能级对目标里德伯态的动态极化为零, 原子动态Stark效应相消, AM-EIT信号极弱. 我们建立简化三能级模型计算tune-out波长, 理论与实验结果基本符合.
    The atomic polarizability represents the response characteristics of atoms to externally applied electro-magnetic fields. The wavelength (or frequency) at which the dynamic polarizability of an atom is equal to zero is referred to as the tune-out wavelength (or frequency). Spectroscopy technology based on the tune-out effect has potential applications in quantum precision measurement, quantum computation and quantum communication. Related research topics include the measurement of fundamental physical constants and strong interactions. The tune-out wavelengths of atoms in low-lying states primarily fall within the optical band, where the theoretical calculations and experimental measurements have significant progress. However, for Rydberg atoms in highly excited states, theoretical calculations are challenging due to their high density of atomic states. The difficulty of experimental measurement arises from small splitting of adjacent atomic energy levels. In this paper, we demonstrate the tune-out wavelengths measurement for Rydberg atoms in a cesium vapor cell at room temperature. We utilize a two-photon cascade excitation to prepare Rydberg states and employ amplitude-modulation electromagnetically-induced transparency (AM-EIT) spectroscopy to measure the tune-out wavelength. By continuously scanning the microwave frequencies, we obtain AM-EIT signals of Rydberg atoms. At near-resonant microwave transition wavelengths, strong AM-EIT signals are observed due to microwave-atom coupling. Conversely, at tune-out wavelengths, the dynamically polarization-induced destructive interference in neighboring energy states occurs which leads to the weak AM-EIT signals. The AM-EIT provides a spectral resolution of about 10 MHz. We have developed a simplified three-level model to calculate the tune-out wavelength. The results of our theoretical calculations are consistent with the experimental findings within a range of ±90 MHz.
      通信作者: 何军, hejun@sxu.edu.cn ; 杜艺杰, duyijiehandan@163.com ; 王杰英, wjy3861@163.com
    • 基金项目: 中国船舶航海保障技术实验室开放基金(批准号: 2023010201)资助的课题.
      Corresponding author: He Jun, hejun@sxu.edu.cn ; Du Yi-Jie, duyijiehandan@163.com ; Wang Jie-Ying, wjy3861@163.com
    • Funds: Project supported by the Open Fund Project of Laboratory of Science and Technology on Marine Navigation and Control, China State Shipbuilding Corporation (Grant No. 2023010201).
    [1]

    Scheffers H, Stark J 1934 Phys. Z. 35 625

    [2]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004Google Scholar

    [3]

    Leonard R H, Fallon A J, Sackett C A, Safronova M S 2015 Phys. Rev. A 92 052501Google Scholar

    [4]

    Arora B, Safronova M S, Clark C W 2011 Phys. Rev. A 84 043401Google Scholar

    [5]

    Schmidt F, Mayer D, Hohmann M, Lausch T, Kindermann F, Widera A 2016 Phys. Rev. A 93 022507Google Scholar

    [6]

    Jefferts S R, Heavner T P, Parker T E, Shirley J H, Donley E A, Ashby N, Levi F, Calonico D, Costanzo G A 2014 Phys. Rev. Lett. 112 050801Google Scholar

    [7]

    Wang Y, Zhang X L, Corcovilos T A, Kumar A, Weiss D S 2015 Phys. Rev. Lett. 115 043003Google Scholar

    [8]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003Google Scholar

    [9]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501Google Scholar

    [10]

    Fallon A, Sackett C 2016 Atoms 4 12Google Scholar

    [11]

    LeBlanc L J, Thywissen J H 2007 Phys. Rev. A 75 053612Google Scholar

    [12]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515Google Scholar

    [13]

    Henson B M, Khakimov R I, Dall R G, Baldwin K G H, Tang L Y, Truscott A G 2015 Phys. Rev. Lett. 115 043004Google Scholar

    [14]

    Leonard R H, Fallon A J, Sackett C A, Safronova M S 2017 Phys. Rev. A 95 059901Google Scholar

    [15]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Phys. Rev. A 93 052516Google Scholar

    [16]

    Lai Z L, Zhang S C, Gou Q D, Li Y 2018 Phys. Rev. A 98 052503Google Scholar

    [17]

    Zhang Y H, Wu F F, Zhang P P, Tang L Y, Zhang J Y, Baldwin K G H, Shi T Y 2019 Phys. Rev. A 99 040502Google Scholar

    [18]

    Copenhaver E, Cassella K, Berghaus R, Müller H 2019 Phys. Rev. A 100 063603Google Scholar

    [19]

    Jiang J, Li X J, Wang X, Dong C Z, Wu Z W 2020 Phys. Rev. A 102 042823Google Scholar

    [20]

    李贤君 2020 硕士学位论文 (兰州: 西北师范大学)

    Li X J 2020 M. S. Thesis (Lanzhou: Northwest Normal University

    [21]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199Google Scholar

    [22]

    Orcutt R H, Cole R H 1967 J. Chem. Phys. 46 697Google Scholar

    [23]

    Molof R W, Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1131Google Scholar

    [24]

    Mille T M, Bederson B 1976 Phys. Rev. A 14 1572Google Scholar

    [25]

    Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1924Google Scholar

    [26]

    Cronin A D, Schemiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051Google Scholar

    [27]

    Miffre A, Jacquet M, Büchner M, Trénec G, Vigué J 2006 Eur. Phys. J. D 38 353Google Scholar

    [28]

    Ekstrom C R, Schmiedmayer J, Chapman M S, Hammond T D, Pritchard D E 1995 Phys. Rev. A 51 3883Google Scholar

    [29]

    Holmgren W F, Revelle M C, Lonij V P A, Cronin A D 2010 Phys. Rev. A 81 053607Google Scholar

    [30]

    Gregoire M D, Hromada I, Holmgren W F, Trubko R, Cronin A D 2015 Phys. Rev. A 92 052513Google Scholar

    [31]

    Amini J M, Gould H 2003 Phys. Rev. Lett. 91 153001Google Scholar

    [32]

    Ratkata A, Gregory P D, Innes A D, Matthies A J, McArd L A, Mortlock J M, Safronova M S, Bromley S L, Cornish S L 2021 Phys. Rev. A 104 052813Google Scholar

  • 图 1  (a) 魔数波长示意图; (b) tune-out波长示意图

    Fig. 1.  (a) Schematic diagram of magic wavelength; (b) schematic diagram of tune-out wavelength.

    图 2  (a) 铯原子里德伯能级; (b) 基于阶梯型多能级结构理论模拟EIT光谱. 横坐标为耦合光失谐, 纵坐标为EIT透射信号强度

    Fig. 2.  (a) In the first part, schematic of a three-level Rydberg atom system with a ground state $\left| {6{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $, an intermediate state $\left| {6{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}} \right\rangle $, and an excited state $\left| {65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $. A weak probe laser couples $\left| {6{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $ with $\left| {6{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}} \right\rangle $ for Rabi frequency ${\varOmega _{\text{p}}}$ and a strong coupling laser couples $\left| {6{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}} \right\rangle $ with $\left| {65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $ for Rabi frequency ${\varOmega _{\text{c}}}$. ${\varDelta _{\text{p}}}$ and $ {\varDelta _{\text{c}}} $ are the laser detuning of the probe and coupling lasers, respectively. In part two, The four microwave transitions adjacent to Rydberg state $\left| {65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $ are $65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 64{{\text{P}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}$, $65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 64{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}$, $ 65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 65{{\text{P}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} $, $65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 65{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}$; (b) transmission of the probe laser as the function of the coupling laser detuning.

    图 3  铯原子基态tune-out波长理论计算结果

    Fig. 3.  Theoretical calculation of ground state tune-out spectrum of cesium atoms.

    图 4  铯原子光谱实验装置图. λ/2, 半波片; PBS, 偏振分光棱镜; L, 透镜; DM1, DM4, 852 nm高反射率(HR)和509 nm高透射率(HT)双色镜; DM2, DM3, 852 nm高透射率(HT)和509 nm高反射率(HR)双色镜; PD, 光电探测器; SAS, 饱和吸收光谱; D, 激光收集器

    Fig. 4.  Experimental set-up. λ/2, half-wave plate; PBS, polarizing beam splitter cube; L, lens; DM1, DM4, 852 nm high reflectivity (HR) and 509 nm high transmissivity (HT) dichroic mirror; DM2, DM3, 852 nm high transmissivity (HT) and 509 nm high reflectivity (HR) dichroic mirror; PD, photodiode; SAS, saturation absorption spectroscopy; D, optical dump.

    图 5  (a) 里德伯态$\left| {65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $对应微波共振跃迁及tune-out光谱; (b) 理论计算$65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 64{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}$, $65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 65{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}$跃迁对应tune-out波长

    Fig. 5.  (a) Microwave resonance transitions and tune-out spectrum of Rydberg state $\left| {65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $; (b) theoretical calculation of the tune-out wavelength between the two transitions, $65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 64{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}} $ and $ 65{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}} \to 65{{\text{P}}_{{3 \mathord{\left/ {\vphantom {3 2}} \right. } 2}}}$.

    图 6  (a) $\left| {60{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $里德伯态对应微波共振跃迁及tune-out光谱; (b) $\left| {60{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $里德伯态共振跃迁及tune-out光谱的微分信号

    Fig. 6.  (a) Microwave resonance transitions and tune-out spectrum of Rydberg state $\left| {60{{\text{S}}_{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}}} \right\rangle $; (b) differential signals of Rydberg state resonance transitions and tune-out spectrum.

  • [1]

    Scheffers H, Stark J 1934 Phys. Z. 35 625

    [2]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004Google Scholar

    [3]

    Leonard R H, Fallon A J, Sackett C A, Safronova M S 2015 Phys. Rev. A 92 052501Google Scholar

    [4]

    Arora B, Safronova M S, Clark C W 2011 Phys. Rev. A 84 043401Google Scholar

    [5]

    Schmidt F, Mayer D, Hohmann M, Lausch T, Kindermann F, Widera A 2016 Phys. Rev. A 93 022507Google Scholar

    [6]

    Jefferts S R, Heavner T P, Parker T E, Shirley J H, Donley E A, Ashby N, Levi F, Calonico D, Costanzo G A 2014 Phys. Rev. Lett. 112 050801Google Scholar

    [7]

    Wang Y, Zhang X L, Corcovilos T A, Kumar A, Weiss D S 2015 Phys. Rev. Lett. 115 043003Google Scholar

    [8]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003Google Scholar

    [9]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501Google Scholar

    [10]

    Fallon A, Sackett C 2016 Atoms 4 12Google Scholar

    [11]

    LeBlanc L J, Thywissen J H 2007 Phys. Rev. A 75 053612Google Scholar

    [12]

    Mitroy J, Tang L Y 2013 Phys. Rev. A 88 052515Google Scholar

    [13]

    Henson B M, Khakimov R I, Dall R G, Baldwin K G H, Tang L Y, Truscott A G 2015 Phys. Rev. Lett. 115 043004Google Scholar

    [14]

    Leonard R H, Fallon A J, Sackett C A, Safronova M S 2017 Phys. Rev. A 95 059901Google Scholar

    [15]

    Zhang Y H, Tang L Y, Zhang X Z, Shi T Y 2016 Phys. Rev. A 93 052516Google Scholar

    [16]

    Lai Z L, Zhang S C, Gou Q D, Li Y 2018 Phys. Rev. A 98 052503Google Scholar

    [17]

    Zhang Y H, Wu F F, Zhang P P, Tang L Y, Zhang J Y, Baldwin K G H, Shi T Y 2019 Phys. Rev. A 99 040502Google Scholar

    [18]

    Copenhaver E, Cassella K, Berghaus R, Müller H 2019 Phys. Rev. A 100 063603Google Scholar

    [19]

    Jiang J, Li X J, Wang X, Dong C Z, Wu Z W 2020 Phys. Rev. A 102 042823Google Scholar

    [20]

    李贤君 2020 硕士学位论文 (兰州: 西北师范大学)

    Li X J 2020 M. S. Thesis (Lanzhou: Northwest Normal University

    [21]

    Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake G W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199Google Scholar

    [22]

    Orcutt R H, Cole R H 1967 J. Chem. Phys. 46 697Google Scholar

    [23]

    Molof R W, Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1131Google Scholar

    [24]

    Mille T M, Bederson B 1976 Phys. Rev. A 14 1572Google Scholar

    [25]

    Schwartz H L, Miller T M, Bederson B 1974 Phys. Rev. A 10 1924Google Scholar

    [26]

    Cronin A D, Schemiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051Google Scholar

    [27]

    Miffre A, Jacquet M, Büchner M, Trénec G, Vigué J 2006 Eur. Phys. J. D 38 353Google Scholar

    [28]

    Ekstrom C R, Schmiedmayer J, Chapman M S, Hammond T D, Pritchard D E 1995 Phys. Rev. A 51 3883Google Scholar

    [29]

    Holmgren W F, Revelle M C, Lonij V P A, Cronin A D 2010 Phys. Rev. A 81 053607Google Scholar

    [30]

    Gregoire M D, Hromada I, Holmgren W F, Trubko R, Cronin A D 2015 Phys. Rev. A 92 052513Google Scholar

    [31]

    Amini J M, Gould H 2003 Phys. Rev. Lett. 91 153001Google Scholar

    [32]

    Ratkata A, Gregory P D, Innes A D, Matthies A J, McArd L A, Mortlock J M, Safronova M S, Bromley S L, Cornish S L 2021 Phys. Rev. A 104 052813Google Scholar

  • [1] 张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民. 基于里德伯原子天线的低频电场波形测量. 物理学报, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [2] 韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生. 射频电场缀饰下铯Rydberg原子的电磁感应透明光谱. 物理学报, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [3] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [4] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [5] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统. 物理学报, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [6] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱. 物理学报, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [7] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用. 物理学报, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [8] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [9] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [10] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [11] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [12] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [13] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [14] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [15] 刘智, 刁文婷, 王杰英, 梁强兵, 杨保东, 何军, 张天才, 王军民. 铯原子气室中相干布居俘获的参数依赖关系研究. 物理学报, 2012, 61(23): 233201. doi: 10.7498/aps.61.233201
    [16] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [17] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究. 物理学报, 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [18] 赵建明, 汪丽蓉, 赵延霆, 马 杰, 肖连团, 贾锁堂. 外加磁场对简并二能级原子系统相干特性的影响. 物理学报, 2005, 54(11): 5093-5097. doi: 10.7498/aps.54.5093
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
计量
  • 文章访问数:  505
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 修回日期:  2024-04-30
  • 上网日期:  2024-06-03
  • 刊出日期:  2024-07-05

/

返回文章
返回