搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子态构型研究单粲味五夸克态的产生

邢晔 李娜 杨翎彬 胡晓会

引用本文:
Citation:

基于分子态构型研究单粲味五夸克态的产生

邢晔, 李娜, 杨翎彬, 胡晓会

The production of singly charm pentaquark based on molecular configurations

Xing Ye, Li Na, Yang Ling-Bin, Hu Xiao-Hui
PDF
HTML
导出引用
  • 基于有效拉氏量方法, 本文主要研究了自旋宇称为$J^P={{1}/{2}}^{-}$的单粲味五夸克态的产生. 笔者根据强子可能的分子态图像, 分别以$ND_s$$ND^*_s$不同的分子态构型, 讨论了$B_s$介子产生单粲味五夸克态${c\bar suud}$和十重态重子$\overline \Delta$, 以及该五夸克态的两体强衰变过程. 通过复合粒子判据, 计算出与单粲味五夸克态${c\bar suud}$相关的强耦合常数. 借助于强子的有效拉氏量方法, 最终得到了单粲味五夸克态的产生分支比. 结果表明, 在单粲味五夸克态${c\bar suud}$$ND_s$的构型下, 具有Cabibbo允许的产生过程: $\overline B_s \rightarrow P_{c \bar{s}} \overline \Delta$的分支比可以达到$10^{-5}$量级, 而在$ND^*_s$的构型下, 该过程的分支比仅为$10^{-8}$量级. 本文的研究结果可以为单粲味五夸克态的实验搜寻和深入研究提供参考, 并期望在将来的实验探测诸如LHCb, Belle II, BaBar等B工厂中得到验证.
    In this work, the authors use the effective Lagrangian method to investigate the production of singly charm pentaquark state with spin parity $J ^ P={1/2}^{-} $. Based on the possible molecular state images of hadrons, the author discusses the production of singly charm pentaquark state ${c\bar suud}$ and decuplet baryon $\overline \Delta$ by $B_s$ meson with different molecular state configurations of $ND_s $ or $ND ^ * _s $. To determine the coupling between pentaquark and their constituents in the molecular scheme, the authors follow the Weinberg compositeness condition to estimate the self-energy diagram of the singly charmed pentaquark. Further study on the production of pentaquark from $B_s$ meson can be propeled by computing the transition matrix elements, or the triangle diagrams, which can be careful divided into two part subprocess, one associated with weak transition can be represented into form factor and decay constant, another one related to strong coupling of hadrons can be described by effective Lagrangian. Selecting the scale parameter α($10 \sim200 $MeV) and binding energy ε($5,20,50 $MeV), the authors can find the branching ratio of the production $\overline B_s \to P_ {c\bar {s}}\overline \Delta $. Under the configuration of $ND_s$ molecule, the branching ratio of the Cabibbo allowed process $\overline B_s \rightarrow P_{c \bar{s}} \overline \Delta$ can reach to order of $10^{-5}$. Moreover, the production branching ratio of $ND^*_s$ molecule is only at the order of $10^{-8}$. A increasing scale parameter α can significantly improve the production branching ratio of the singly charm pentaquark. In addition, the binding energy and the coupling constants will also affect the magnitude of production. Therefore, considering the above factors, the production branching ratio of singly charm pentaquark in $B_s$ decays have considerable results, which is worth experimental and theoretical research in the future. The findings of our work can provide a reference for the experimental search and study of singly charm pentaquark, and it is hoped that they will be verified in future experimental detections at b factories such as LHCb, Belle, and BaBar.
  • 图 1  具有$ ND^{(*)}_s $分子态构型的单粲味五夸克态的自能图

    Fig. 1.  The self-energy diagram of singly charm pentaquark as hadronic molecules $ ND^{(*)}_s $.

    图 2  $ \overline B_s $介子产生单粲五夸克的三角图. (a-b) 具有$ ND_s $分子态构型的单粲五夸克; (c-d) 具有$ ND^*_s $分子态构型的单粲五夸克

    Fig. 2.  The triangle diagrams of singly charm pentaquark produced by $ \overline B_s $ meson. (a-b) singly charm pentaquark with $ ND_s $ molecular state configuration; (c-d) singly charm pentaquark with $ ND^*_s $ molecular state configuration.

    图 3  $ \overline B_s $介子弱衰变过程的W发射图

    Fig. 3.  The W emission diagram of $ \overline B_s $ meson weak decay

    图 4  $ \overline B_s \xrightarrow[]{N} P_{c \bar{s}} \overline \Delta $的分支比随参数α的变化曲线 (a) $ P_{c \bar{s}} $为$ ND_s $分子态; (b) $ P_{c \bar{s}} $为$ N{D^*_s} $分子态

    Fig. 4.  The branching ratios of $ \overline B_s \xrightarrow[]{N} P_{c \bar{s}} \overline \Delta $ vary with the parameter α: (a) $ P_{c \bar{s}} $ as hadronic molecule $ ND_s $; (b) $ P_{c \bar{s}} $ as hadronic molecule $ ND^*_s $

    表 1  形状因子$ F_{1}(k^2) $, $ F_{2}(k^2) $和$ A_i(k^2) $(i = 1, 2, 3)的拟合展开参数$ a_i $和$ m_{pole} $[33,34]

    Table 1.  The fitted parameters $ a_i $ and pole mass $ m_{pole} $ of form factors $ F_{1}(k^2) $, $ F_{2}(k^2) $ and $ A_i(k^2) $(i = 1, 2, 3).

    参数 $ {\overline B_s\to D} $ $ {\overline B_s\to D^*} $
    $ F_1(k_1) $ $ F_2(k_1) $ $ A_{0}(k_1) $ $ A_{1}(k_1) $ $ A_{2}(k_1) $ $ A_{3}(k_1) $
    $ a_{0} $ $ 0.666 $ $ 0.666 $ $ 0.100 $ $ 0.105 $ $ 0.055 $ $ 0.059 $
    $ a_{1} $ $ -0.206 $ $ -3.236 $ $ -0.180 $ $ -0.430 $ $ -0.010 $ $ -0.110 $
    $ a_{2} $ $ -0.106 $ $ -0.075 $ $ -0.006 $ $ -0.100 $ $ -0.030 $ $ -0.250 $
    $ a_{3} $ $ 0.00 $ $ -0.00 $ $ 0.00 $ $ -0.030 $ $ 0.060 $ $ -0.050 $
    $ m_{pole} $/GeV $ — $ $ — $ $ 6.335 $ $ 6.275 $ $ 6.745 $ $ 6.745 $
    下载: 导出CSV

    表 2  单粲味五夸克态的产生分支比(α = 100 MeV)

    Table 2.  The production branching ratio of singly charm pentaquark state (α = 100 MeV).

    分子态 产生道 分支比($ \times 10^{-6} $)
    $ \varepsilon $/MeV
    5 20 50
    $ ND_s $$ \overline B_s \xrightarrow[]{N} P_{c \bar{s}} \overline \Delta $29.4031.3724.51
    $ \overline B_s\xrightarrow[]{N} P_{c \bar{s}}(\to \Lambda_c K) \overline \Delta $$ 0.223 $0.1940.137
    $ ND^*_s $$ \overline B_s\xrightarrow[]{N} P_{c \bar{s}} \overline \Delta $0.055$ 0.408 $1.570
    $ \overline B_s\xrightarrow[]{N} P_{c \bar{s}}(\to \Lambda_c K) \overline \Delta $$ 0.0006 $0.00410.0157
    $ \overline B_s\xrightarrow[]{N} P_{c \bar{s}}(\to \Sigma_c K) \overline \Delta $$ 0.0004 $0.00240.0072
    $ \overline B_s\xrightarrow[]{N} P_{c \bar{s}}(\to p D_s) \overline \Delta $0.00020.00150.0050
    下载: 导出CSV
  • [1]

    Aa ij, Roel and others 2015 Phys. Rev. Lett. 115 072001Google Scholar

    [2]

    Aa ij, Roel and others 2019 Phys. Rev. Lett. 122 222001Google Scholar

    [3]

    Aa ij, Roel and others 2021 Sci. Bull. 66 1278Google Scholar

    [4]

    Aa ij, Roel and others 2022 Phys. Rev. Lett. 128 062001Google Scholar

    [5]

    Santopinto, Elena, Giachino, Alessandro 2017 Phys. Rev. D 96 014014Google Scholar

    [6]

    Deng C R, Ping J L, Huang H X, Wang F 2017 Phys. Rev. D 95 014031Google Scholar

    [7]

    Azizi K, Sarac Y, Sundu H 2023 Phys. Rev. D 107 014023Google Scholar

    [8]

    Chen R, Liu X, Li X Q, Zhu S L 2015 Phys. Rev. Lett. 115 132002Google Scholar

    [9]

    Guo F K, Mei?ner Ulf-G, Wang W, Yang Z 2015 Phys. Rev. D 92 071502Google Scholar

    [10]

    Branz Tanja, Gutsche Thomas, Lyubovitskij Valery E 2021 Phys. Rev. D 104 114028Google Scholar

    [11]

    Giron, Jesse F, Lebed, Richard F 2022 Phys. Rev. D 106 074007Google Scholar

    [12]

    Zhang Y, He G Z, Ye Q X, Y D C, Hua J, Wang Q 2024 Chin. Phys. Lett. 41 021301Google Scholar

    [13]

    Chen H X, Chen W Z, Shi L 2019 Phys. Rev. D 100 051501Google Scholar

    [14]

    Liu M Z, Pan Y W, Peng F Z, Sánchez Sánchez Mario, Geng L S, Hosaka Atsushi, Pavon Valderrama Manuel 2019 Phys. Rev. Lett. 122 242001Google Scholar

    [15]

    Zhu J T, Kong S Y, He J 2023 American Physical Society 107 034029

    [16]

    Wu Q, Chen D Y 2019 Phys. Rev. D 100 114002Google Scholar

    [17]

    Peng F Z, Yan M J, Sánchez Sánchez Mario, Valderrama Manuel Pavon 2021 Eur. Phys. J. C 81 666Google Scholar

    [18]

    Xiao C W, Wu J J, Zou B S 2021 Phys. Rev. D 103 054016Google Scholar

    [19]

    Lu J X, Liu M Z, Shi R X, Geng L S 2021 Phys. Rev. D 104 034022Google Scholar

    [20]

    Wu Q, Chen D Y, Ji R 2021 Chin. Phys. Lett. 38 071301Google Scholar

    [21]

    叶全兴, 何广朝, 王倩 2023 物理学报 72 201401Google Scholar

    Geng T, Yan S B, Wang Y H, Yang H J, Zhang T C, Wang J M 2023 Acta Phys. Sin. 72 201401Google Scholar

    [22]

    Shi P P, Baru Vadim, Guo F K, Hanhart Christoph, Nefediev Alexey 2024 Chin. Phys. Lett. 41 031301Google Scholar

    [23]

    Li N, Xing Y, Hu X H 2023 Eur. Phys. J. C 83 1013Google Scholar

    [24]

    Huang Y, Xiao C J, Lü Q F, Wang R, He J, Geng L S 2018 Phys. Rev. D 97 094013Google Scholar

    [25]

    Zhu H Q, Ma N N, Huang Y 2020 Eur. Phys. J. C 80 1184Google Scholar

    [26]

    Yan Y, Hu X H, Huang H X, Ping J L 2023 Phys. Rev. D 108 094045Google Scholar

    [27]

    Xin Q, Yang X, Wang Z G 2023 Int. J. Mod. Phys. A 38 2350123Google Scholar

    [28]

    Yan M J, Peng F Z, Pavon Valderrama Manuel 2024 Phys. Rev. D 109 014023Google Scholar

    [29]

    Steven Weinberg 1963 Phys. Rev. 130 776Google Scholar

    [30]

    American Physical Society 2009 Phys. Rev. D 79 014035Google Scholar

    [31]

    Xiao C J, Huang Y, Dong Y B, Geng L S, Chen D Y 2019 Phys. Rev. D 100 014022Google Scholar

    [32]

    Shen C W, Wu J J, Zou B S 2019 Phys. Rev. D 100 056006Google Scholar

    [33]

    McLean E., Davies C. T. H., Koponen, J., Lytle, A. T. 2020 Phys. Rev. D 101 074513Google Scholar

    [34]

    Harrison Judd, Davies, Christine T. H. 2022 Phys. Rev. D 105 094506

    [35]

    Heng H Y 1997 Phys. Rev. D 56 2799Google Scholar

    [36]

    Gutsche, Thomas and Ivanov, Mikhail A. and Körner, Jürgen G. and Lyubovitskij, Valery E, Santorelli Pietro, Habyl Nurgul 2015 Phys. Rev. D 91 074001Google Scholar

    [37]

    Wu S M, Wang F, Zou B S 2023 Phys. Rev. C 108 045201

    [38]

    Yalikun Nijiati, Zou B S 2022 Phys. Rev. D 105 094026Google Scholar

    [39]

    Li H N, Lu C D, Yu F S 2012 Phys. Rev. D 86 036012Google Scholar

    [40]

    Xing Y, Xing Z P 2019 Chin. Phys. C 43 073103Google Scholar

    [41]

    Xu Y J, Cui C Y, Liu Y L, Huang M Q 2020 Phys. Rev. D 102 034028Google Scholar

  • [1] 初鹏程, 刘鹤, 杜先斌. 色味锁夸克物质与夸克星. 物理学报, doi: 10.7498/aps.73.20231649
    [2] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论. 物理学报, doi: 10.7498/aps.69.20200196
    [3] 翟韩豫, 申佳音, 薛迅. 源自弦景观的有效Quintessence. 物理学报, doi: 10.7498/aps.68.20190282
    [4] 秦朝朝, 黄燕, 彭玉峰. Br2分子在360610 nm的光解离动力学研究. 物理学报, doi: 10.7498/aps.66.193301
    [5] 李琼, 沈礼, 闫俊刚, 戴长建, 杨玉娜. Eu原子4f76p1/2ns自电离过程的动力学特性. 物理学报, doi: 10.7498/aps.65.153202
    [6] 梁洪瑞, 沈礼, 荆华, 戴长建. 用速度影像技术研究Eu原子6p1/28s的自电离衰变的分支比. 物理学报, doi: 10.7498/aps.63.133202
    [7] 靳钊, 乔丽萍, 郭晨, 王江安, 刘策. 单轴应变Si(001)任意晶向电子电导有效质量模型. 物理学报, doi: 10.7498/aps.62.058501
    [8] 周文飞, 叶小玲, 徐波, 张世著, 王占国. 有效折射率微扰法研究单缺陷光子晶体平板微腔的性质. 物理学报, doi: 10.7498/aps.61.054202
    [9] 刘晓静, 张佰军, 华中, 肖利, 刘兵, 吴义恒, 王清才, 王岩, 张丙新. 关于B0→π-l+ν l衰变过程分支比的计算. 物理学报, doi: 10.7498/aps.60.041301
    [10] 邹贤容, 邵剑雄, 陈熙萌, 崔莹. 高电荷态Ar17+离子在表面以下过程中发射X射线分支比及各分支能量的研究. 物理学报, doi: 10.7498/aps.59.6064
    [11] 韩丽丽, 戴振文, 王云鹏, 蒋占魁. 钯原子谱线的分支比测量. 物理学报, doi: 10.7498/aps.57.3425
    [12] 吴向尧, 公丕锋, 苏希玉, 刘晓静, 范希会, 王 丽, 石宗华, 郭义庆. D→Klv~l衰变过程的研究. 物理学报, doi: 10.7498/aps.55.3375
    [13] 陆 地, 颜晓红, 丁建文. 单壁碳纳米管中电子的有效质量. 物理学报, doi: 10.7498/aps.53.527
    [14] 吴向尧, 尹新国, 郭义庆, 张晓波, 尹建华, 谢远亮. 关于B0→K0π0衰变过程研究. 物理学报, doi: 10.7498/aps.53.1015
    [15] 陈晓波, 孟 超, 王亚非, 马 辉, 李美仙. 布居分支比模型——一种定性分析上转换效率的有效方法. 物理学报, doi: 10.7498/aps.49.1176
    [16] 李子平. 奇异拉氏量系统的整体量子正则对称性质. 物理学报, doi: 10.7498/aps.45.1601
    [17] 滕华国, 沈百飞, 张文琦, 徐至展. 组态相互作用效应对类钠铜离子自电离速率和分支比的影响. 物理学报, doi: 10.7498/aps.43.205
    [18] 张耀中. 手征QCD2模型的有效拉氏量和质量生成. 物理学报, doi: 10.7498/aps.36.1513
    [19] 陈激. 关于Y1*对产生的分支比. 物理学报, doi: 10.7498/aps.21.1919
    [20] 朱保如. 不稳定粒子η的衰变分支比R((η→ππγ)/(η→3π)). 物理学报, doi: 10.7498/aps.21.92
计量
  • 文章访问数:  208
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-21

/

返回文章
返回