搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴应变Si(001)任意晶向电子电导有效质量模型

靳钊 乔丽萍 郭晨 王江安 刘策

引用本文:
Citation:

单轴应变Si(001)任意晶向电子电导有效质量模型

靳钊, 乔丽萍, 郭晨, 王江安, 刘策

Electronic conductivity effective masses along arbitrary directional channel in uniaxial strained Si(001)

Jin Zhao, Qiao Li-Ping, Guo Chen, Wang Jiang-An, Richard C. Liu
PDF
导出引用
  • 单轴应变Si材料电子电导有效质量是理解其电子迁移率增强的关键因素之一, 对其深入研究具有重要的理论意义和实用价值. 本文从Schrödinger方程出发, 将应力场考虑进来, 建立了单轴应变Si材料导带E-k解析模型. 并在此基础上, 最终建立了单轴应变Si(001)任意晶向电子电导率有效质量与应力强度和应力类型的关系模型. 本文的研究结果表明: 1) 单轴应力致电子迁移率增强的应力类型应选择张应力. 2) 单轴张应力情况下, 仅从电子电导有效质量角度考虑, [110]/(001)晶向与[100]/(001)晶向均可. 但考虑到态密度有效质量的因素, 应选择[110]/(001)晶向. 3) 沿(001)晶面上[110]晶向施加单轴张应力时, 若想进一步提高电子迁移率, 应选取[100]晶向为器件沟道方向. 以上结论可为应变Si nMOS器件性能增强的研究及导电沟道的应力与晶向设计提供重要理论依据.
    Electronic conductivity effective mass is one of the key parameters studing electron mobility enhancement in unixial strained Si material. Its in-depth study has the significant theoretical and practical values. In this paper, we first establish the E-k relation for conduction band in a unixial strained Si material. And the model of electronic conductivity effective mass along an arbitrary directional channel in the uniaxial strained Si (001) is obtained. Our concluding results are described as follows. 1) Tensile stress should be used to enhance electron mobility for unixial trained Si. 2) In the case of tensile stress application, both [110]/(001) and [100]/(001) directions are the desirable ones from the evaluation of electronic conductivity effective mass. And [110]/(001) direction should be preferable when the density of state effective mass is taken into consideration. 3) If [100] direction becomes the channel direction under [110]/(001) uniaxial strain, the further electron mobility enhancement will occur. The results above can provide valuable reference for the conduction channel design related to stress and orientation in the strained Si nMOS device.
    • 基金项目: 国家自然科学基金(批准号: 51277012, 61162025)和中央高校基本科研业务费专项资金(批准号: CHD2011ZD004, CHD2013JC023, CHD2013JC035, CHD2013JC048, CHD2013JC056)资助的课题.
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant Nos. 51277012, 61162025), and the Fundamental Research Funds for the Central Universities (Grant Nos. CHD2011ZD004, CHD2013JC023, CHD2013JC035, CHD2013JC048, CHD2013JC056).
    [1]

    Jiseok K and Massimo V F 2010 J. App. Phys. 108 013710

    [2]

    Weber O, Takenaka M and Takagi Sh I 2010 Jpn. J. Appl. Phys. 49 0741011

    [3]

    Uchida K, Kinoshita A and Saitoh 2006 IEDM 1019

    [4]

    Song J J, Zhang H M, Dian X Y, Hu H Y and Xuan R X 2008 Acta Physica Sinica. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]

    [5]

    Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 5918 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 5918]

    [6]

    Tan Y H, Li X J, Tian L L 2008 IEEE Trans. Electron Devices 55 1386

    [7]

    Courtesy J R 2005 IEEE Circuits & Magazine 9 18

    [8]

    Ungersboeck E, Sverdlov V, Kosina H 2006 International Conference on Simulation of Semicondutor Processes and Devices 43

    [9]

    Thompson S E, Armstrong M, Auth C 2004 IEEE Trans. Electron. Dev. 51 11

    [10]

    Paul D J 2004 Semiconductor Science and Technology 19 75

    [11]

    Song J J, Zhang H M, Hu H Y, Dian X Y, Xuan R X 2007 Chin. Phys. 16 3827

    [12]

    Song J J, Zhang H M, Shu B, Hu H Y, Dian X Y 2008 Chinese Journal of Semiconductor 29 442

    [13]

    Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2010 Science In China 53 454

    [14]

    Shi M, Wu G J 2008 Physics of Semiconductor Devices (Xi'an: Xi'an Jiaotong University Press) (in Chinese) p389 [施敏, 伍国珏 2008 半导体器件物理(西安: 西安交通大学出版社) 第389页]

    [15]

    Song J J, Zhang H M, Hu H Y, Xang X Y, Wang G Y 2012 Acta Physica Sinica 61 057304 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 物理学报 61 057304]

    [16]

    Song J J, Zhang H M, Dian X Y, Hu H Y, Xang X Y, Wang G Y 2012 Science in China 55 1399

    [17]

    Thompson S E, Parthasarathy S 2006 Materials Today 9 20

    [18]

    Thompson S E, Sun G Y, Parthasarathy S 2006 Materials Science & Engineering B 135 179

    [19]

    Thompson S E, Sun G Y, Choi Y S 2006 IEEE Trans. Electron Devices 53 1010

  • [1]

    Jiseok K and Massimo V F 2010 J. App. Phys. 108 013710

    [2]

    Weber O, Takenaka M and Takagi Sh I 2010 Jpn. J. Appl. Phys. 49 0741011

    [3]

    Uchida K, Kinoshita A and Saitoh 2006 IEDM 1019

    [4]

    Song J J, Zhang H M, Dian X Y, Hu H Y and Xuan R X 2008 Acta Physica Sinica. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]

    [5]

    Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 5918 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 5918]

    [6]

    Tan Y H, Li X J, Tian L L 2008 IEEE Trans. Electron Devices 55 1386

    [7]

    Courtesy J R 2005 IEEE Circuits & Magazine 9 18

    [8]

    Ungersboeck E, Sverdlov V, Kosina H 2006 International Conference on Simulation of Semicondutor Processes and Devices 43

    [9]

    Thompson S E, Armstrong M, Auth C 2004 IEEE Trans. Electron. Dev. 51 11

    [10]

    Paul D J 2004 Semiconductor Science and Technology 19 75

    [11]

    Song J J, Zhang H M, Hu H Y, Dian X Y, Xuan R X 2007 Chin. Phys. 16 3827

    [12]

    Song J J, Zhang H M, Shu B, Hu H Y, Dian X Y 2008 Chinese Journal of Semiconductor 29 442

    [13]

    Song J J, Zhang H M, Dian X Y, Hu H Y, Xuan R X 2010 Science In China 53 454

    [14]

    Shi M, Wu G J 2008 Physics of Semiconductor Devices (Xi'an: Xi'an Jiaotong University Press) (in Chinese) p389 [施敏, 伍国珏 2008 半导体器件物理(西安: 西安交通大学出版社) 第389页]

    [15]

    Song J J, Zhang H M, Hu H Y, Xang X Y, Wang G Y 2012 Acta Physica Sinica 61 057304 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇 2012 物理学报 61 057304]

    [16]

    Song J J, Zhang H M, Dian X Y, Hu H Y, Xang X Y, Wang G Y 2012 Science in China 55 1399

    [17]

    Thompson S E, Parthasarathy S 2006 Materials Today 9 20

    [18]

    Thompson S E, Sun G Y, Parthasarathy S 2006 Materials Science & Engineering B 135 179

    [19]

    Thompson S E, Sun G Y, Choi Y S 2006 IEEE Trans. Electron Devices 53 1010

  • [1] 蔡潇潇, 罗国语, 李志强, 贺言. 转角双层石墨烯在应变下的光电导率. 物理学报, 2021, 70(18): 187301. doi: 10.7498/aps.70.20210110
    [2] 李芳, 王明清, 郑明, 卢苇, 于庆南, 贾燕, 吴坚. 一种有效解决离轴数字全息相图倾斜畸变的数字参考平面方法. 物理学报, 2018, 67(9): 094202. doi: 10.7498/aps.67.20172528
    [3] 陈航宇, 宋建军, 张洁, 胡辉勇, 张鹤鸣. 小尺寸单轴应变Si PMOS沟道晶面/晶向选择实验新发现. 物理学报, 2018, 67(6): 068501. doi: 10.7498/aps.67.20172138
    [4] 魏文叶, 申佳音, 吴奕暐, 杨礼想, 薛迅, 阮自强. 大尺度有效引力的E(2)规范理论模型. 物理学报, 2017, 66(13): 130301. doi: 10.7498/aps.66.130301
    [5] 宋建军, 包文涛, 张静, 唐昭焕, 谭开洲, 崔伟, 胡辉勇, 张鹤鸣. (100)Si基应变p型金属氧化物半导体[110]晶向电导率有效质量双椭球模型. 物理学报, 2016, 65(1): 018501. doi: 10.7498/aps.65.018501
    [6] 杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇. 氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理. 物理学报, 2015, 64(23): 238502. doi: 10.7498/aps.64.238502
    [7] 刘伟峰, 宋建军. 应变(001)p型金属氧化物半导体反型层空穴量子化与电导率有效质量. 物理学报, 2014, 63(23): 238501. doi: 10.7498/aps.63.238501
    [8] 周文飞, 叶小玲, 徐波, 张世著, 王占国. 有效折射率微扰法研究单缺陷光子晶体平板微腔的性质. 物理学报, 2012, 61(5): 054202. doi: 10.7498/aps.61.054202
    [9] 戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川. 应变Ge空穴有效质量的各向异性与各向同性. 物理学报, 2012, 61(23): 237102. doi: 10.7498/aps.61.237102
    [10] 王冠宇, 宋建军, 张鹤鸣, 胡辉勇, 马建立, 王晓艳. 单轴应变Si导带色散关系解析模型. 物理学报, 2012, 61(9): 097103. doi: 10.7498/aps.61.097103
    [11] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型. 物理学报, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [12] 宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英. 应变Si1-xGex/(111)Si空穴有效质量模型. 物理学报, 2010, 59(1): 579-582. doi: 10.7498/aps.59.579
    [13] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [14] 邵建立, 何安民, 段素青, 王裴, 秦承森. 单轴应变驱动铁bcc—hcp相转变的微观模拟. 物理学报, 2010, 59(7): 4888-4894. doi: 10.7498/aps.59.4888
    [15] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化. 物理学报, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [16] 赵丽霞, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜. 应变Si电子电导有效质量模型. 物理学报, 2010, 59(9): 6545-6548. doi: 10.7498/aps.59.6545
    [17] 宋建军, 张鹤鸣, 宣荣喜, 胡辉勇, 戴显英. 应变Si/(001)Si1-xGex空穴有效质量各向异性. 物理学报, 2009, 58(7): 4958-4961. doi: 10.7498/aps.58.4958
    [18] 陆 地, 颜晓红, 丁建文. 单壁碳纳米管中电子的有效质量. 物理学报, 2004, 53(2): 527-530. doi: 10.7498/aps.53.527
    [19] 顾世洧. Frankel激子的有效质量与温度的关系. 物理学报, 1980, 29(4): 517-523. doi: 10.7498/aps.29.517
    [20] 顾世洧. 极化子有效质量与温度的关系. 物理学报, 1980, 29(5): 609-617. doi: 10.7498/aps.29.609
计量
  • 文章访问数:  5309
  • PDF下载量:  2050
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-13
  • 修回日期:  2012-10-09
  • 刊出日期:  2013-03-05

单轴应变Si(001)任意晶向电子电导有效质量模型

  • 1. 长安大学信息工程学院, 西安 710064;
  • 2. 西安电子科技大学微电子学院, 宽禁带半导体材料与器件重点实验室, 西安 710071;
  • 3. University of Houston, Houston, Texas, USA
    基金项目: 国家自然科学基金(批准号: 51277012, 61162025)和中央高校基本科研业务费专项资金(批准号: CHD2011ZD004, CHD2013JC023, CHD2013JC035, CHD2013JC048, CHD2013JC056)资助的课题.

摘要: 单轴应变Si材料电子电导有效质量是理解其电子迁移率增强的关键因素之一, 对其深入研究具有重要的理论意义和实用价值. 本文从Schrödinger方程出发, 将应力场考虑进来, 建立了单轴应变Si材料导带E-k解析模型. 并在此基础上, 最终建立了单轴应变Si(001)任意晶向电子电导率有效质量与应力强度和应力类型的关系模型. 本文的研究结果表明: 1) 单轴应力致电子迁移率增强的应力类型应选择张应力. 2) 单轴张应力情况下, 仅从电子电导有效质量角度考虑, [110]/(001)晶向与[100]/(001)晶向均可. 但考虑到态密度有效质量的因素, 应选择[110]/(001)晶向. 3) 沿(001)晶面上[110]晶向施加单轴张应力时, 若想进一步提高电子迁移率, 应选取[100]晶向为器件沟道方向. 以上结论可为应变Si nMOS器件性能增强的研究及导电沟道的应力与晶向设计提供重要理论依据.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回