搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转角双层石墨烯在应变下的光电导率

蔡潇潇 罗国语 李志强 贺言

引用本文:
Citation:

转角双层石墨烯在应变下的光电导率

蔡潇潇, 罗国语, 李志强, 贺言

Optical conductivity of twisted bilayer graphene under heterostrain

Cai Xiao-Xiao, Luo Guo-Yu, Li Zhi-Qiang, He Yan
PDF
HTML
导出引用
  • 理论研究了转角双层石墨烯在施加不同单轴应变下的能带结构和光电导率, 用连续模型分别计算了转角为1.05°和1.47°的转角双层石墨烯在应变下的能带、态密度以及光电导率, 发现这些量随应变的变化是连续且显著的. 通过对能带的分析以及光电导率的测量能够获得应变对平带产生的实际影响, 这为今后实验对应变与平带的研究打下基础; 此外样品往往受到具有空间不均匀性的应变作用, 测量其局域的光电导率便能够估计应变的空间分布大小; 同时应变对能带的调制为原位调控转角双层石墨烯的强关联、拓扑以及量子效应提供了思路.
    Twisted bilayer graphene (TBG) is a two-dimensional material composed of two layers stacked at a certain angle. When the twisted angle decreases, the lattice mismatch between two layers produces moiré pattern at a long wavelength which significantly modifies the low-energy band structure. In particular, when the twisted angle is close to the so-called “magic angle”, two moiré flat bands are formed near a charge neutral point due to the strong interlayer coupling. These flat bands with high density of states are essential in realizing superconductivity and correlated insulating states. More recently, the magic angle TBG combining an hBN system has exhibited spin-valley polarization when 3/4 of flat bands are filled, thereby providing an ideal platform to achieve quantum anomalous Hall states. Whether it is TBG system or TBG-hBN system, the flat band becomes a crucial condition for discovering so rich physical connotations. Besides the twisted angle, the strain gives an alternative way to modulate flat bands. It has been reported that applying heterostrain in magic angle TBG can makes flat moiré band tunable; strain can also generate flat bands in non-magic angle TBG. Moreover, the reconstruction of TBG due to the strain gives rise to a serial of novel physical phenomena such as topological protected soliton and photonic crystal. Another reason for studying strain effect is that the strain is ubiquitous in the fabrication progress. The strain can also be controlled via piezoelectric substrate which makes possible the in situ modulation of correlated states, topology and quantum effect. Our work is to study the heterostrain effect in TBG band structure and optical conductivity by using a continuum model. Although the resulting conduction band and valence bands keep connected through Dirac points protected by the C2 symmetry, their separation increases significantly when heterostrain is applied while the Dirac point is also shifted. The optical conductivity is characterized by a series of peaks associated with van Hove singularities, and the peak energies are systematically shifted with the strain amplitude. These changes show that the heterostrain exerts a great influence on electron property of TBG.
      通信作者: 贺言, heyan_ctp@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874271)资助的课题
      Corresponding author: He Yan, heyan_ctp@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874271)
    [1]

    卢晓波, 张广宇 2015 物理学报 64 077305Google Scholar

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305Google Scholar

    [2]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E 2018 Nature 556 80Google Scholar

    [3]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [4]

    Xia L, Kennes D M, Tancogne-Dejean N, Altarelli M, Rubio A 2019 Nano Lett. 19 4934Google Scholar

    [5]

    Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127Google Scholar

    [6]

    Zhang Y H, Mao M, Senthil T 2019 Phys. Rev. Research 1 033126Google Scholar

    [7]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [8]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [9]

    Huder L, Artaud A, Quang T L, Laissardière G T D, Jansen A G M, Lapertot G, Chapelier C, Renard V T 2018 Phys. Rev. Lett. 120 156405Google Scholar

    [10]

    Bi Z, Yuan N F Q, Fu L 2019 Phys. Rev. B 100 035448Google Scholar

    [11]

    Alden J S, Tsen A W, Huang P Y, Hovden R, Brown L, Park J, Muller D A, McEuen P L 2013 PNAS 110 11256Google Scholar

    [12]

    Sunku S S, Ni G X, Jiang B Y, Yoo H, Sternbach A, McLeod A S, Stauber T, Xiong L, Taniguchi T, Watanabe K, Kim P, M. Fogler M M, Basov D N 2018 Science 362 1153Google Scholar

    [13]

    Wen L, Li Z Q, He Y 2021 Chin. Phys. B 30 017303Google Scholar

    [14]

    Kerelsky A, McGilly L, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C 2019 Nature 572 95Google Scholar

    [15]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802Google Scholar

    [16]

    Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087

    [17]

    McCann E, Koshino M 2013 Rep. Prog. Phys. 76 056503Google Scholar

    [18]

    Moon P, Koshino M 2013 Phys. Rev. B 87 205404Google Scholar

    [19]

    Po H C, Zou L J, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089

    [20]

    吕新宇, 李志强 2019 物理学报 68 220303Google Scholar

    Lü X Y, Li Z Q 2019 Acta Phys. Sin. 68 220303Google Scholar

  • 图 1  TBG在转角为5°时的结构示意图, 其莫尔周期结构清晰可见

    Fig. 1.  Schematic of TBG structure at θ = 5°, the resulted moiré pattern can be clearly seen.

    图 2  (a) TBG莫尔布里渊区示意图: 两个大正六边形代表上下两层单层石墨烯的第一布里渊区, 小正六边形为转角形成的莫尔布里渊区; (b) 偏移后的狄拉克点附近能带: 红色和蓝色曲线分别代表图(a)中莫尔布里渊区同色虚线路径的能带, 虚线路径中的黑点代表狄拉克点的位置

    Fig. 2.  (a) Schematic of TBG moiré Brillouin zone: The two large regular hexagons represent the first Brillouin zone of the upper and lower graphene layers, the small regular hexagons refer to the moiré Brillouin zone. (b) The band structures near the shifted Dirac points: Red and blue curve lines represent the band structures follow the same colored dashed lines path in the panel (a) respectively, the Dirac points are marked by the black dots in dash lines.

    图 3  TBG的能带 (a)—(c) TBG在转角为1.05°, 应变大小分别为0%, 3%和6%时的能带; (d)—(f) TBG在转角为1.47°, 应变大小分别为0%, 3%和6%时的能带

    Fig. 3.  Band structures of TBG: (a)−(c) The band structures with 0%, 0.3%, 0.6% uniaxial heterostrain at twisted angle θ = 1.05°, respectively; (d)−(f) the band structures with 0%, 0.3%, 0.6% uniaxial heterostrain of at twisted angle θ = 1.47°, respectively.

    图 4  TBG在转角为1.05°、施加0.6%大小的应变时的能带(a)、态密度(b)以及光电导(c), 图(c)中绿色、红色与蓝色箭头对应的吸收峰分别对应于图(a)中的同色箭头代表的带间跃迁

    Fig. 4.  (a) Band structure, (b) density of states and (c) corresponding optical conductivity of TBG with 0.6% uniaxial heterostrain at 1.05°. The green, red and blue arrows in panel (c) correspond to the interband transition marked with arrows of the same color in panel (a).

    图 5  TBG的态密度 (a) TBG在转角为1.05°, 应变大小分别为0% (黑色), 0.3% (蓝色), 0.6% (红色)时的态密度; (b) TBG在转角为1.47°, 应变大小分别为0% (黑色), 0.3% (蓝色), 0.6% (红色)时的态密度; 蓝色虚线表示正文中所讨论的①, ②区域的边界

    Fig. 5.  (a) Density of states (DOS) of TBG with 0% (black curve), 0.3% (blue curve) and 0.6% (red curve) uniaxial heterostrain at 1.05°; (b) DOS of TBG with 0% (black curve), 0.3% (blue curve) and 0.6% (red curve) uniaxial heterostrain at 1.47°. Blue dash lines in panel (a) and (b) represent the boundary of ①, ② region, respectively.

    图 6  TBG的光电导 (a) TBG在转角为1.05°, 应变大小分别为0% (黑色), 0.3% (蓝色), 0.6% (红色)时的光电导; (b) TBG在转角为1.47°, 应变大小分别为0% (黑色), 0.3% (蓝色), 0.6% (红色)时的光电导; 蓝色虚线表示正文中所讨论的①, ②区域的边界

    Fig. 6.  (a) Optical conductivity of TBG with 0% (black curve), 0.3% (blue curve) and 0.6% (red curve) uniaxial heterostrain at 1.05°; (b) optical conductivity of TBG with 0% (black curve), 0.3% (blue curve) and 0.6% (red curve) uniaxial heterostrain at 1.47°. Blue dash lines in panel (a) and (b) represent the boundary of ①, ② region, respectively.

  • [1]

    卢晓波, 张广宇 2015 物理学报 64 077305Google Scholar

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305Google Scholar

    [2]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E 2018 Nature 556 80Google Scholar

    [3]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [4]

    Xia L, Kennes D M, Tancogne-Dejean N, Altarelli M, Rubio A 2019 Nano Lett. 19 4934Google Scholar

    [5]

    Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P, Senthil T 2019 Phys. Rev. B 99 075127Google Scholar

    [6]

    Zhang Y H, Mao M, Senthil T 2019 Phys. Rev. Research 1 033126Google Scholar

    [7]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [8]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [9]

    Huder L, Artaud A, Quang T L, Laissardière G T D, Jansen A G M, Lapertot G, Chapelier C, Renard V T 2018 Phys. Rev. Lett. 120 156405Google Scholar

    [10]

    Bi Z, Yuan N F Q, Fu L 2019 Phys. Rev. B 100 035448Google Scholar

    [11]

    Alden J S, Tsen A W, Huang P Y, Hovden R, Brown L, Park J, Muller D A, McEuen P L 2013 PNAS 110 11256Google Scholar

    [12]

    Sunku S S, Ni G X, Jiang B Y, Yoo H, Sternbach A, McLeod A S, Stauber T, Xiong L, Taniguchi T, Watanabe K, Kim P, M. Fogler M M, Basov D N 2018 Science 362 1153Google Scholar

    [13]

    Wen L, Li Z Q, He Y 2021 Chin. Phys. B 30 017303Google Scholar

    [14]

    Kerelsky A, McGilly L, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C 2019 Nature 572 95Google Scholar

    [15]

    Lopes dos Santos J M B, Peres N M R, Castro Neto A H 2007 Phys. Rev. Lett. 99 256802Google Scholar

    [16]

    Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, Fu L 2018 Phys. Rev. X 8 031087

    [17]

    McCann E, Koshino M 2013 Rep. Prog. Phys. 76 056503Google Scholar

    [18]

    Moon P, Koshino M 2013 Phys. Rev. B 87 205404Google Scholar

    [19]

    Po H C, Zou L J, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089

    [20]

    吕新宇, 李志强 2019 物理学报 68 220303Google Scholar

    Lü X Y, Li Z Q 2019 Acta Phys. Sin. 68 220303Google Scholar

  • [1] 柏文庆, 杨江涛, 杨翠红, 陈云云. 电磁场调制下的应变黑磷烯带间光电导. 物理学报, 2024, 73(13): 137803. doi: 10.7498/aps.73.20240445
    [2] 张冷, 沈宇皓, 汤朝阳, 吴孔平, 张鹏展, 刘飞, 侯纪伟. 单轴应变对Sb2Se3空穴迁移率的影响. 物理学报, 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [3] 李春熠, 莫子夜, 鲁兴业. 铁基超导研究中的单轴应变调控方法. 物理学报, 2024, 73(19): 197103. doi: 10.7498/aps.73.20241080
    [4] 李耀隆, 李哲, 李松远, 张任良. 层间共价键和拉伸应变对双层石墨烯纳米带热导率的调控. 物理学报, 2023, 72(24): 243101. doi: 10.7498/aps.72.20231230
    [5] 刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷. 转角双层-双层石墨烯中同位旋极化的C = 4陈绝缘态. 物理学报, 2023, 72(14): 147303. doi: 10.7498/aps.72.20230497
    [6] 陈航宇, 宋建军, 张洁, 胡辉勇, 张鹤鸣. 小尺寸单轴应变Si PMOS沟道晶面/晶向选择实验新发现. 物理学报, 2018, 67(6): 068501. doi: 10.7498/aps.67.20172138
    [7] 杨云畅, 武斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件. 物理学报, 2017, 66(21): 218101. doi: 10.7498/aps.66.218101
    [8] 杜一帅, 康维, 郑瑞伦. 外延石墨烯电导率和费米速度随温度变化规律研究. 物理学报, 2017, 66(1): 014701. doi: 10.7498/aps.66.014701
    [9] 宋建军, 包文涛, 张静, 唐昭焕, 谭开洲, 崔伟, 胡辉勇, 张鹤鸣. (100)Si基应变p型金属氧化物半导体[110]晶向电导率有效质量双椭球模型. 物理学报, 2016, 65(1): 018501. doi: 10.7498/aps.65.018501
    [10] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用. 物理学报, 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [11] 杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇. 氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理. 物理学报, 2015, 64(23): 238502. doi: 10.7498/aps.64.238502
    [12] 刘伟峰, 宋建军. 应变(001)p型金属氧化物半导体反型层空穴量子化与电导率有效质量. 物理学报, 2014, 63(23): 238501. doi: 10.7498/aps.63.238501
    [13] 靳钊, 乔丽萍, 郭晨, 王江安, 刘策. 单轴应变Si(001)任意晶向电子电导有效质量模型. 物理学报, 2013, 62(5): 058501. doi: 10.7498/aps.62.058501
    [14] 张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云. 具有分离门的电抽运多层石墨烯负动态电导率的理论研究. 物理学报, 2012, 61(4): 047803. doi: 10.7498/aps.61.047803
    [15] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型. 物理学报, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [16] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [17] 邵建立, 何安民, 段素青, 王裴, 秦承森. 单轴应变驱动铁bcc—hcp相转变的微观模拟. 物理学报, 2010, 59(7): 4888-4894. doi: 10.7498/aps.59.4888
    [18] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化. 物理学报, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [19] 罗 涛, 朱 伟, 石勤伟, 王晓平. 准粒子谱函数对单层石墨片最小电导率的影响. 物理学报, 2008, 57(6): 3775-3779. doi: 10.7498/aps.57.3775
    [20] 邱圣德, 胡承正, 王爱军, 周 详. 十次对称准晶的光电导率. 物理学报, 2006, 55(2): 743-747. doi: 10.7498/aps.55.743
计量
  • 文章访问数:  7256
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-16
  • 修回日期:  2021-04-26
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回