搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁场调制下的应变黑磷烯带间光电导

柏文庆 杨江涛 杨翠红 陈云云

引用本文:
Citation:

电磁场调制下的应变黑磷烯带间光电导

柏文庆, 杨江涛, 杨翠红, 陈云云

Interband optical conductivity in electromagnetic field modulated strained black phosphorene

Bai Wen-Qing, Yang Jiang-Tao, Yang Cui-Hong, Chen Yun-Yun
PDF
HTML
导出引用
  • 黑磷烯具有各向异性且独特的光电性能被广泛研究. 应变、电压等常用来调制能带结构, 进而调制其光电特性. 本文采用紧束缚近似哈密顿量, 考虑施加垂直磁场、电场、面内面外应变条件下的黑磷烯能带结构, 进一步利用Kubo公式研究了黑磷烯光电导率在多个调制因子下的特征, 并从能带结构进行了机理分析. 垂直磁场使能带劈裂, 产生多通道带间跃迁, 光电导率表现出多个峰. 随着面内拉伸应变增加能隙增加, 光电导峰位依赖于能隙. 而面外拉伸应变对能隙的调制区别于面内应变, 能隙表现出非单调变化. 电场通过带隙的变化, 调制光电导率峰值位置. 综合不同的调制因子, 能带和光电导表现出丰富的调制效果, 为研究基于黑磷烯光电器件的应用提供理论支持.
    Black phosphorene (BP) has been widely investigated for its anisotropic and unique photoelectric properties. Strain, voltage and so on are commonly used to modulate the energy band structure and accordingly its photoelectric characteristics. In this study, we consider the energy band structure of BP in the vertical magnetic field, electric field, and in-plane/out-of-plane strains by using the tight-binding approximate Hamiltonian. The anisotropic frequency-dependent interband optical conductivity (IOC) of BP is investigated by using the Kubo formula in these modulation factors. Inherent asymmetry in band dispersion along the armchair (AC) direction and the zigzag (ZZ) direction leads to anisotropic IOC. The introduction of a vertical magnetic field induces band splitting, thereby generating multiple interband transition channels. In this case, the IOC along both the AC direction and the ZZ direction exhibits three peaks around the original peak position, and the magnitudes of the peaks are also modulated. With the increase of in-plane strain (from –20% to 20%), the band gap increases monotonically, and both the position and magnitude of the peaks vary with band gap changing. However, the band gap of BP undergoes a non-monotonic change under out-of-plane strain (from –20% to 20%), which is different from the change under in-plane strain. The band gap reaches a minimum value when a tensile strain of 12% is applied. Along the AC direction, the modulation of the IOC by in-plane strain is opposite to the modulation of out-of-plane strain (εz < 12%), indicating a competitive effect when triaxial strains are applied. Along the ZZ direction, in-plane strain primarily modulates the peak magnitude, while out-of-plane strain effectively modulates not only the peak position but also the peak magnitude obviously. The modulation of the IOC by forward and reverse electric fields are symmetrical. The coefficient for the peak position shift due to the vertical electric field is 1/2 in the AC direction and 1/10 in the ZZ direction. By integrating various modulation factors, we achieve versatile control over the energy band and IOC of BP, providing theoretical support for the application of BP in optoelectronic devices.
      通信作者: 杨翠红, chyang@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11547030)资助的课题.
      Corresponding author: Yang Cui-Hong, chyang@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11547030).
    [1]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [2]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [5]

    Xia F N, Wang H, Jia Y C 2014 Nat. Commun. 5 4458Google Scholar

    [6]

    Jain A, McGaughey A J H 2015 Sci. Rep. 5 8501Google Scholar

    [7]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [8]

    Ezawa M 2014 New J. Phys. 16 115004Google Scholar

    [9]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 235319Google Scholar

    [10]

    Li L K, Kim J, Jin C H, et al. 2017 Nat. Nanotechnol. 12 21Google Scholar

    [11]

    Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J, Kim K S 2015 Science 349 723Google Scholar

    [12]

    Peng X H, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [13]

    Rodin A S, Carvalho A, Castro Neto A H 2014 Phys. Rev. Lett. 112 176801Google Scholar

    [14]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [15]

    Dai J, Zeng X C 2014 J. Phys. Chem. Lett. 5 1289Google Scholar

    [16]

    Chen X L, Lu X B, Deng B C, et al. 2017 Nat. Commun. 8 1672Google Scholar

    [17]

    Li L K, Yang F Y, Ye G J, et al. 2016 Nat. Nanotechnol. 11 593Google Scholar

    [18]

    Pereira Jr J M, Katsnelson M I 2015 Phys. Rev. B 92 075437Google Scholar

    [19]

    Zhou X Y, Lou W K, Zhai F, Chang K 2015 Phys. Rev. B 92 165405Google Scholar

    [20]

    Phuong L T T, Phong T C, Yarmohammadi M 2020 Sci. Rep. 10 9201Google Scholar

    [21]

    Keshtan M A M, Esmaeilzadeh M 2015 J. Phys. D: Appl. Phys. 48 485301Google Scholar

    [22]

    Wang Y, Guo Y L, Wang Z K, et al. 2021 ACS Nano 15 12069Google Scholar

    [23]

    Wang Y, Xu W, Fu L, et al. 2023 ACS Appl. Mater. Interfaces 15 54797Google Scholar

    [24]

    Wang Y, Xu W, Yang D Y, et al. 2023 ACS Nano 17 24320Google Scholar

    [25]

    Li P K, Appelbaum I 2014 Phys. Rev. B 90 115439Google Scholar

    [26]

    Le P T T, Yarmohammadi M 2019 J. Magn. Magn. Mater. 491 165629Google Scholar

    [27]

    Rudenko A N, Katsnelson M I 2014 Phys. Rev. B 89 201408Google Scholar

    [28]

    Yang C H, Zhang J Y, Wang G X, Zhang C 2018 Phys. Rev. B 97 245408Google Scholar

    [29]

    Jiang J W, Park H S 2015 Phys. Rev. B 91 235118Google Scholar

    [30]

    Khang P D, Davoudiniya M, Phuong L T T, Phong T C, Yarmohammadi M 2019 Phys. Chem. Chem. Phys. 21 15133Google Scholar

    [31]

    Yang C H, Zhang J Y, Wieser R, Xu W 2022 J. Phys. D: Appl. Phys. 55 085103Google Scholar

    [32]

    Le P T T, Mirabbaszadeh K, Yarmohammadi M 2019 J. Appl. Phys. 125 193101Google Scholar

  • 图 1  黑磷烯晶格结构示意图 (a) 三维; (b) 二维

    Fig. 1.  Schematic diagram of lattice structure of BP: (a) Three-dimensional; (b) two-dimensional.

    图 2  黑磷烯能带示意图 (a) 磁场下; (b) 电场下; (c) x轴应变下

    Fig. 2.  Energy band structure of BP in the presence: (a) Magnetic field; (b) electric field; (c) x-axis strain.

    图 3  同时施加磁场和应变下的黑磷烯带隙(虚线1.52对应的是本征带隙的位置) (a) 施加x轴应变 ; (b) 施加y轴应变; (c) 施加z轴应变

    Fig. 3.  Bandgap of BP in the presence of the magnetic field and strain applied along (Dashed line corresponds to the position of the intrinsic band gap): (a) x-axis; (b) y-axis; (c) z-axis.

    图 4  同时施加电场和应变下的黑磷烯带隙(虚线1.52对应的是本征带隙的位置) (a) 施加x轴应变; (b) 施加y轴应变; (c) 施加z轴应变

    Fig. 4.  Bandgap of BP in the presence of the electric field and strain applied along (Dashed line corresponds to the position of the intrinsic band gap): (a) x-axis; (b) y-axis; (c) z-axis.

    图 5  AC方向的带间光电导率在不同x轴应变条件下随入射光能量的变化 (a), (c) 不同磁场下的光电导实部; (b), (d) 不同磁场下的光电导虚部. 黑色、红色和蓝色曲线分别表示无应变、压缩应变和拉伸应变下的结果

    Fig. 5.  Interband optical conductivity along the AC direction as a function of the incident photon energy at different x-axial strain: (a), (c) Real part under different magnetic fields; (b), (d) the imaginary part under different magnetic fields. Black, red, and blue curves represent the results with no strain, compressive strain, and tensile strain, respectively.

    图 8  带间光电导率实部在不同z轴应变条件下随入射光能量的变化 (a), (c)不同磁场下AC方向的结果; (b), (d)不同磁场下ZZ方向的结果

    Fig. 8.  Real part of the interband optical conductivity as a function of the incident photon energy at different z-axial strain: (a), (c) Results along the AC direction under different magnetic fields; (b), (d) results along the ZZ direction under different magnetic fields.

    图 7  带间光电导率实部在不同y轴应变条件下随入射光能量的变化 (a), (c) 不同磁场下AC方向的结果; (b), (d)不同磁场下ZZ方向的结果

    Fig. 7.  Real part of the interband optical conductivity as a function of the incident photon energy at different y-axial strain: (a), (c) Results along the AC direction under different magnetic fields; (b), (d) the results along the ZZ direction under different magnetic fields.

    图 6  ZZ方向的带间光电导率在不同x轴应变条件下随入射光能量的变化 (a), (c) 不同磁场下的光电导实部; (b), (d) 不同磁场下的光电导虚部

    Fig. 6.  Interband optical conductivity along the ZZ direction as a function of the incident photon energy at different x-axial strain: (a), (c) Real part under different magnetic fields; (b), (d) the imaginary part under different magnetic fields.

    图 9  带间光电导率实部在三轴应变条件下随入射光能量的变化 (a), (c)不同磁场下AC方向的结果; (b), (d)不同磁场下ZZ方向的结果

    Fig. 9.  Real part of the interband optical conductivity as a function of the incident photon energy at different triaxial strains: (a), (c) Results along the AC direction under different magnetic fields; (b), (d) the results along the ZZ direction under different magnetic fields.

    图 10  带间光电导率实部在三轴应变条件下随入射光能量的变化 (a), (c) 不同电场下AC方向的结果; (b), (d) 不同电场下ZZ方向的结果

    Fig. 10.  Real part of the interband optical conductivity as a function of the incident photon energy at different triaxial strains: (a), (c) Results along the AC direction under different electric fields; (b), (d) the results along the ZZ direction under different electric fields.

    表 1  黑磷烯的跳变参数与晶格常数[27,28]

    Table 1.  Hopping energy and lattice parameter of BP[27,28].

    ti 具体数值/eV ai 具体数值/Å
    t1 –1.22 a1 1.41763
    t2 3.665 a2 0.79732
    t3 –0.205 a3 3.01227
    t4 –0.105 a4 2.21468
    t5 –0.055 a5 3.63258
    下载: 导出CSV

    表 2  黑磷烯的应变系数[29,30]

    Table 2.  Strain coefficient of BP[29,30].

    γ$ \alpha _{1}^\gamma $$ \alpha _{2}^\gamma $$ \alpha _{3}^\gamma $$ \alpha _{4}^\gamma $$ \alpha _{5}^\gamma $
    x0.44600.09920.75050.39760.7530
    y0.557100.24610.22800
    z00.905200.37220.2538
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [2]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [5]

    Xia F N, Wang H, Jia Y C 2014 Nat. Commun. 5 4458Google Scholar

    [6]

    Jain A, McGaughey A J H 2015 Sci. Rep. 5 8501Google Scholar

    [7]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [8]

    Ezawa M 2014 New J. Phys. 16 115004Google Scholar

    [9]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 235319Google Scholar

    [10]

    Li L K, Kim J, Jin C H, et al. 2017 Nat. Nanotechnol. 12 21Google Scholar

    [11]

    Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J, Kim K S 2015 Science 349 723Google Scholar

    [12]

    Peng X H, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [13]

    Rodin A S, Carvalho A, Castro Neto A H 2014 Phys. Rev. Lett. 112 176801Google Scholar

    [14]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [15]

    Dai J, Zeng X C 2014 J. Phys. Chem. Lett. 5 1289Google Scholar

    [16]

    Chen X L, Lu X B, Deng B C, et al. 2017 Nat. Commun. 8 1672Google Scholar

    [17]

    Li L K, Yang F Y, Ye G J, et al. 2016 Nat. Nanotechnol. 11 593Google Scholar

    [18]

    Pereira Jr J M, Katsnelson M I 2015 Phys. Rev. B 92 075437Google Scholar

    [19]

    Zhou X Y, Lou W K, Zhai F, Chang K 2015 Phys. Rev. B 92 165405Google Scholar

    [20]

    Phuong L T T, Phong T C, Yarmohammadi M 2020 Sci. Rep. 10 9201Google Scholar

    [21]

    Keshtan M A M, Esmaeilzadeh M 2015 J. Phys. D: Appl. Phys. 48 485301Google Scholar

    [22]

    Wang Y, Guo Y L, Wang Z K, et al. 2021 ACS Nano 15 12069Google Scholar

    [23]

    Wang Y, Xu W, Fu L, et al. 2023 ACS Appl. Mater. Interfaces 15 54797Google Scholar

    [24]

    Wang Y, Xu W, Yang D Y, et al. 2023 ACS Nano 17 24320Google Scholar

    [25]

    Li P K, Appelbaum I 2014 Phys. Rev. B 90 115439Google Scholar

    [26]

    Le P T T, Yarmohammadi M 2019 J. Magn. Magn. Mater. 491 165629Google Scholar

    [27]

    Rudenko A N, Katsnelson M I 2014 Phys. Rev. B 89 201408Google Scholar

    [28]

    Yang C H, Zhang J Y, Wang G X, Zhang C 2018 Phys. Rev. B 97 245408Google Scholar

    [29]

    Jiang J W, Park H S 2015 Phys. Rev. B 91 235118Google Scholar

    [30]

    Khang P D, Davoudiniya M, Phuong L T T, Phong T C, Yarmohammadi M 2019 Phys. Chem. Chem. Phys. 21 15133Google Scholar

    [31]

    Yang C H, Zhang J Y, Wieser R, Xu W 2022 J. Phys. D: Appl. Phys. 55 085103Google Scholar

    [32]

    Le P T T, Mirabbaszadeh K, Yarmohammadi M 2019 J. Appl. Phys. 125 193101Google Scholar

  • [1] 李永宁, 谢逸群, 王音. 二维铁电In2Se3/InSe垂直异质结能带的应力调控. 物理学报, 2021, 70(22): 227701. doi: 10.7498/aps.70.20211158
    [2] 卫琳, 刘贵立, 王家鑫, 穆光耀, 张国英. 拉伸形变及电场作用对黑磷烯吸附Si原子电学特性影响的密度泛函理论研究. 物理学报, 2021, 70(21): 216301. doi: 10.7498/aps.70.20210812
    [3] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] 张国英, 焦兴强, 刘业舒, 张安国, 孟春雪. 缺陷与掺杂共存的黑磷烯甲醛传感行为的电子理论. 物理学报, 2020, 69(23): 237101. doi: 10.7498/aps.69.20200990
    [5] 蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏. 各向异性三维非对称双锥五模超材料的能带结构及品质因数. 物理学报, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [6] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究. 物理学报, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [7] 张忠强, 刘汉伦, 范晋伟, 丁建宁, 程广贵. 黑磷纳米通道内压力驱动流体流动特性. 物理学报, 2019, 68(17): 170202. doi: 10.7498/aps.68.20190531
    [8] 魏相飞, 何锐, 张刚, 刘向远. InAs/GaSb量子阱中太赫兹光电导特性. 物理学报, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [9] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [10] 陈小兰, 张耘, 冉启义. 掺铁铌酸锂晶体的光电导衰减特性研究. 物理学报, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [11] 董占民, 孙红三, 许佳, 李一, 孙家林. 宏观长Ag2S纳米线簇的制备及其温度电导特性和光电导特性. 物理学报, 2011, 60(7): 077304. doi: 10.7498/aps.60.077304
    [12] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [13] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [15] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [16] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [17] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [18] 张世斌, 孔光临, 徐艳月, 王永谦, 刁宏伟, 廖显伯. 微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化. 物理学报, 2002, 51(1): 111-114. doi: 10.7498/aps.51.111
    [19] 张德恒, 刘云燕, 张德骏. 用MOCVD方法制备的n型GaN薄膜紫外光电导. 物理学报, 2001, 50(9): 1800-1804. doi: 10.7498/aps.50.1800
    [20] 袁先漳, 裴慧元, 陆卫, 李宁, 史国良, 方家熊, 沈学础. Zn0.04Cd0.96Te中深能级的红外光电导谱研究. 物理学报, 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
计量
  • 文章访问数:  1485
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-05-08
  • 上网日期:  2024-05-24
  • 刊出日期:  2024-07-05

/

返回文章
返回