-
太赫兹技术由于具有重大的科学价值及应用前景而引起了广泛关注,其核心问题是性能优异的室温太赫兹辐射源和探测器研究.本文用半经典的玻尔兹曼方程方法研究了InAs/GaSb量子阱系统中载流子对电磁场的响应,运用平衡方程方法求解玻尔兹曼方程得到了量子阱系统中的光电导,系统地研究了量子阱结构对光电导的影响,揭示了在该量子阱系统中光电导产生的物理机制.研究发现,量子阱结构主要通过调节载流子的能级、浓度和波函数的耦合影响光电导,对称性较好的量子阱结构(8 nm-8 nm)的光电导信号更强,其峰值落在太赫兹区(0.2 THz),并且在低温下器件的性能较好,温度升高则吸收峰略有降低,且光电导峰值发生红移.研究结果表明该量子阱系统可以用作室温太赫兹光电器件.
-
关键词:
- InAs/GaSb量子阱 /
- 太赫兹 /
- 光电导 /
- 平衡方程方法
Great attention has been paid to the terahertz (THz) technology due to its potential applications, in which THz radiation source and detector with excellent performances at the room temperature are most desired. The semi-classical Boltzmann equation is employed to study the response of electrons and holes to the electromagnetic radiation field in InAs/GaSb based type Ⅱ quantum well system (QWS). The balance equation method is used to solve the Boltzmann equation, and the influences of the structure of the QWS on the photoconductivity is studied in detail to reveal the mechanism of the photoconductivity in the QWS. The photoconductivity is influenced by the carrier density, the subband energy of the carriers and the coupling of the wavefunctions which can be modulated conveniently by the structure of the QWS. In this study, our attention focuses on the influence of the structure of the QWS on the conductivity. When the width of the InAs layer and the GaSb layer are both 8 nm, a sharp peak in photoconductivity is observed at about 0.2 THz due to the electron transition in different layers. The strength of the peak decreases slightly with the increase of the temperature, and a red shift is observed. However, the photoconductivity is not sensitive to the temperature and has good performances at relatively high temperatures up to the room temperature, which indicates that the InAs/GaSb based type-Ⅱ QWS can be used as a THz photoelectric device at room temperature.[1] Liu H B, Zhong H, Karpowicz N, Chen Y, Zhang X C 2007 Proc. IEEE 95 1514
[2] Cao J C 2006 Physics 35 632 (in Chinese) [曹俊诚 2006 物理 35 632]
[3] Li H, Han Y J, Tan Z Y, Zhang R, Cao J C 2010 Acta Phys. Sin. 59 2169 (in Chinese) [黎华, 韩英军, 谭智勇, 张戎, 曹俊诚 2010 物理学报 59 2169]
[4] Tan Z Y, Wan W J, Li H, Cao J C 1983 Phys. Rev. B 28 842
[5] Altarelli M 1983 Phys. Rev. B 28 842
[6] Munekata H, Esaki L, Chang L L 1987 J. Vac. Sci. Technol. B 5 809
[7] Yu L J, Deng G R, Su Y H 2012 Infrared Technology 34 683 (in Chinese) [余连杰, 邓功荣, 苏玉辉 2012 红外技术 34 683]
[8] Wei X F, Xu W, Zeng Z 2007 J. Phys.: Condens. Mat. 19 506209
[9] Norton P 2006 Opto-Electton. Rev. 14 1
[10] Norton P R, Campbell J B, Horn S B, Reago D A 2000 Proc. SPIE 4130 226
[11] Horn S, Norton P, Cincotta T, Stoltz A J, Benson J D, Perconti P, Campbell J 2000 Proc. SPIE 5074 44
[12] Gautam N, Kim H S, Kutty M N, Plis E, Dawson L R, Krishna S 2010 Appl. Phys. Lett. 96 231107
[13] Liu C, Hughes T L, Qi X L, Wang K, Zhang S C 2008 Phys. Rev. Lett. 100 236601
[14] Knez I, Du R R 2012 Front. Phys. 7 200
[15] Knez I, Du R R, Sullivan G 2012 Phys. Rev. B 86 165439
[16] Knez I, Du R R 2011 Phys. Rev. Lett. 107 136603
[17] Knez I, Du R R 2012 Phys. Rev. Lett. 109 186603
[18] Yan B, Zhang S C 2012 Rep. Prog. Phys. 75 096501
[19] Yang C H, Wang G X, Zhang C, Ao Z M 2017 J. Appl. Phys. 122 133109
[20] Yang C H, Chen Y Y, Jiang J J, Ao Z M 2016 Solid State Commun. 227 23
[21] Jonsson B, Eng S T 1990 IEEE J. Quantum Elect. 26 2025
[22] Ying H, Zhang F M, Yang Y F, Li C F 2010 Chin. Phys. B 19 040306
[23] He Y, Cao Z Q, Shen Q H 2004 Chin. Phys. Lett. 21 2089
[24] Lei X L, Liu S Y 2000 J. Phys.: Condens. Mat. 12 4655
-
[1] Liu H B, Zhong H, Karpowicz N, Chen Y, Zhang X C 2007 Proc. IEEE 95 1514
[2] Cao J C 2006 Physics 35 632 (in Chinese) [曹俊诚 2006 物理 35 632]
[3] Li H, Han Y J, Tan Z Y, Zhang R, Cao J C 2010 Acta Phys. Sin. 59 2169 (in Chinese) [黎华, 韩英军, 谭智勇, 张戎, 曹俊诚 2010 物理学报 59 2169]
[4] Tan Z Y, Wan W J, Li H, Cao J C 1983 Phys. Rev. B 28 842
[5] Altarelli M 1983 Phys. Rev. B 28 842
[6] Munekata H, Esaki L, Chang L L 1987 J. Vac. Sci. Technol. B 5 809
[7] Yu L J, Deng G R, Su Y H 2012 Infrared Technology 34 683 (in Chinese) [余连杰, 邓功荣, 苏玉辉 2012 红外技术 34 683]
[8] Wei X F, Xu W, Zeng Z 2007 J. Phys.: Condens. Mat. 19 506209
[9] Norton P 2006 Opto-Electton. Rev. 14 1
[10] Norton P R, Campbell J B, Horn S B, Reago D A 2000 Proc. SPIE 4130 226
[11] Horn S, Norton P, Cincotta T, Stoltz A J, Benson J D, Perconti P, Campbell J 2000 Proc. SPIE 5074 44
[12] Gautam N, Kim H S, Kutty M N, Plis E, Dawson L R, Krishna S 2010 Appl. Phys. Lett. 96 231107
[13] Liu C, Hughes T L, Qi X L, Wang K, Zhang S C 2008 Phys. Rev. Lett. 100 236601
[14] Knez I, Du R R 2012 Front. Phys. 7 200
[15] Knez I, Du R R, Sullivan G 2012 Phys. Rev. B 86 165439
[16] Knez I, Du R R 2011 Phys. Rev. Lett. 107 136603
[17] Knez I, Du R R 2012 Phys. Rev. Lett. 109 186603
[18] Yan B, Zhang S C 2012 Rep. Prog. Phys. 75 096501
[19] Yang C H, Wang G X, Zhang C, Ao Z M 2017 J. Appl. Phys. 122 133109
[20] Yang C H, Chen Y Y, Jiang J J, Ao Z M 2016 Solid State Commun. 227 23
[21] Jonsson B, Eng S T 1990 IEEE J. Quantum Elect. 26 2025
[22] Ying H, Zhang F M, Yang Y F, Li C F 2010 Chin. Phys. B 19 040306
[23] He Y, Cao Z Q, Shen Q H 2004 Chin. Phys. Lett. 21 2089
[24] Lei X L, Liu S Y 2000 J. Phys.: Condens. Mat. 12 4655
计量
- 文章访问数: 6753
- PDF下载量: 117
- 被引次数: 0