搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温生长砷化镓的超快光抽运-太赫兹探测光谱

樊正富 谭智勇 万文坚 邢晓 林贤 金钻明 曹俊诚 马国宏

引用本文:
Citation:

低温生长砷化镓的超快光抽运-太赫兹探测光谱

樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏

Study on ultrafast dynamics of low-temperature grown GaAs by optical pump and terahertz probe spectroscopy

Fan Zheng-Fu, Tan Zhi-Yong, Wan Wen-Jian, Xing Xiao, Lin Xian, Jin Zuan-Ming, Cao Jun-Cheng, Ma Guo-Hong
PDF
导出引用
  • 本文采用光抽运-太赫兹探测技术系统研究了低温生长砷化镓(LT-GaAs)中光生载流子的超快动力学过程. 光激发LT-GaAs薄层电导率峰值随抽运光强增加而增加,最后达到饱和,其饱和功率为54 J/cm2. 当载流子浓度增大时,电子间的库仑相互作用将部分屏蔽缺陷对电子的俘获概率,从而导致LT-GaAs的快速载流子俘获时间随抽运光强增加而变长. 光激发薄层电导率的色散关系可以用Cole-Cole Drude模型很好地拟合,结果表明LT-GaAs内部载流子的散射时间随抽运光强增加和延迟时间(产生光和抽运光)变长而增加,主要来源于电子-电子散射以及电子-杂质缺陷散射共同贡献,其中电子-杂质缺陷散射的强度与光激发薄层载流子浓度密切相关,并可由散射时间分布函数 来描述. 通过对光激发载流子动力学、光激发薄层电导率以及迁移率变化的研究,我们提出适当增加缺陷浓度,可以进一步降低载流子迁移率和寿命,为研制和设计优良的THz发射器提供了实验依据.
    Low-temperature-grown GaAs (LT-GaAs) possesses high carrier mobility, fast charge trapping, high dark resistance, and large threshold breakdown voltage, which make LT-GaAs a fundamental material for fabricating the ultrafast photoconductive switch, high efficient terahertz emitter, and high sensitive terahertz detector. Although lots of researches have been done on the optical and optoelectrical properties of LT-GaAs, the ultrafast dynamics of the photoexcitation and the relaxation mechanism are still unclear at present, especially when the photocarrier density is close to or higher than the defect density in the LT-GaAs, the dispersion of photocarriers shows a complicated pump fluence dependence. With the development of THz science and technology, the terahertz spectroscopy has become a powerful spectroscopic method, and the advantages of this method are contact-free, highly sensitive to free carriers, and sub-picosecond time resolved. In this article, by employing optical pump and terahertz probe spectroscopy, we investigate the ultrafast carrier dynamics of photogenerated carriers in LT-GaAs. The results reveal that the LT-GaAs has an ultrafast carrier capture process in contrast with that in GaAs wafer. The photoconductivity in LT-GaAs increases linearly with pump fluence at low power, and the saturation can be reached when the pump fluence is higher than 54 J/cm2. It is also found that the fast process shows a typical relaxation time of a few ps contributed by the capture of defects in the LT-GaAs, which is strongly dependent on pump fluence: higher pump fluence shows longer relaxation time and larger carrier mobility. By employing Cole-Cole Drude model, we can reproduce the photoconductivity well. Our results reveal that photocarrier relaxation time is dominated by the carrier-carrier Coulomb interaction: under low carrier density, the carrier-carrier Coulomb interaction is too small to screen the impurity-carrier scattering, and impurity-carrier scattering plays an important role in the photocarrier relaxation process. On the other hand, under high pump fluence excitation, the carrier-carrier Coulomb interaction screens partially the impurity-carrier scattering, which leads to the reduction of impurity-carrier scattering rate. As a result, the photocarrier lifetime and mobility increase with increasing pump fluence. The experimental findings provide fundamental information for developing and designing an efficient THz emitter and detector.
      通信作者: 马国宏, ghma@staff.shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674213,11604202,61405233)、国家重大科学仪器设备开发专项(批准号:2011YQ150021)和上海市教委重点课题(批准号:14ZZ101)资助的课题.
      Corresponding author: Ma Guo-Hong, ghma@staff.shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674213, 11604202, 61405233), the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2011YQ150021), and the Research Innovation Fund of the Shanghai Education Committee, China (Grant No. 14ZZ101).
    [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2001 J. Appl. Phys. 90 5915

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 1999 Phys. Rev. B 62 61

    [3]

    Segschneider G, Dekorsy T, Kurz H, Hey R, Ploog K 1997 Appl. Phys. Lett. 71 2779

    [4]

    Krotkus A, Bertulis K, Dapkus L, Olin U, Marcinkevicius S 1999 Appl. Phys. Lett. 75 3336

    [5]

    Jepsen P U, Jacobsen R H, Keiding S R 1996 J. Opt. Soc. Am. B 13 2424

    [6]

    Camus E C, Hughes J L, Johnston M B 2005 Phys. Rev. B 71 195301

    [7]

    Auston D H, Cheung K P, Smith P R 1984 Appl. Phys. Lett. 45 284

    [8]

    Melloch M, Woodall J, Harmon E, Otsuka N, Pollak F, Nolte D, Feenstra R, Lutz M 1995 Annu. Rev. Mater. Sci. 25 547

    [9]

    Weber Z L, Cheng H, Gupta S, Whitaker J, Nichols K, Smith F 1993 J. Electron. Mater. 22 1465

    [10]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [11]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photonics Rev. 5 124

    [12]

    Beard M C, Turner G M, Schmuttenmaer C A 2000 Phys. Rev. B 62 15764

    [13]

    Lui K P H, Hegmann F A 2001 Appl. Phys. Lett. 78 3478

    [14]

    Kadlec F, Nemec H, Kuzel P 2004 Phys. Rev. B 70 125205

    [15]

    Shi Y L, Zhou Q L, Zhang C L, Jin B 2008 Appl. Phys. Lett. 93 121115

    [16]

    Gao F, Carr L, Porter C D, Tanner D B, Williams G P, Hierschmugl C J, Dutta B, Wu X D, Etemad S 1996 Phys. Rev. B 54 700

    [17]

    Porte H P, Jepsen P U, Daghestani N, Rafailov E U, Turchinovich D 2009 Appl. Phys. Lett. 94 262104

    [18]

    Haiml M, Grange R, Keller U 2004 Appl. Phys. B 79 331

    [19]

    Cole K S, Cole R H 1941 J. Chem. Phys. 9 341

    [20]

    Jeon T I, Grischkowsky D 1997 Phys. Rev. Lett. 78 1106

    [21]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 2259

    [22]

    Mics Z, Angio A D, Jensen S A, Bonn M, Turchinovich D 2013 Appl. Phys. Lett. 102 231120

    [23]

    Kostakis I, Missous M 2013 AIP Adv. 3 092131

    [24]

    Kostakis I, Saeedkia D, Missous M 2012 IEEE Trans. Terahertz Sci. Technol. 2 617

  • [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2001 J. Appl. Phys. 90 5915

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 1999 Phys. Rev. B 62 61

    [3]

    Segschneider G, Dekorsy T, Kurz H, Hey R, Ploog K 1997 Appl. Phys. Lett. 71 2779

    [4]

    Krotkus A, Bertulis K, Dapkus L, Olin U, Marcinkevicius S 1999 Appl. Phys. Lett. 75 3336

    [5]

    Jepsen P U, Jacobsen R H, Keiding S R 1996 J. Opt. Soc. Am. B 13 2424

    [6]

    Camus E C, Hughes J L, Johnston M B 2005 Phys. Rev. B 71 195301

    [7]

    Auston D H, Cheung K P, Smith P R 1984 Appl. Phys. Lett. 45 284

    [8]

    Melloch M, Woodall J, Harmon E, Otsuka N, Pollak F, Nolte D, Feenstra R, Lutz M 1995 Annu. Rev. Mater. Sci. 25 547

    [9]

    Weber Z L, Cheng H, Gupta S, Whitaker J, Nichols K, Smith F 1993 J. Electron. Mater. 22 1465

    [10]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [11]

    Jepsen P U, Cooke D G, Koch M 2011 Laser Photonics Rev. 5 124

    [12]

    Beard M C, Turner G M, Schmuttenmaer C A 2000 Phys. Rev. B 62 15764

    [13]

    Lui K P H, Hegmann F A 2001 Appl. Phys. Lett. 78 3478

    [14]

    Kadlec F, Nemec H, Kuzel P 2004 Phys. Rev. B 70 125205

    [15]

    Shi Y L, Zhou Q L, Zhang C L, Jin B 2008 Appl. Phys. Lett. 93 121115

    [16]

    Gao F, Carr L, Porter C D, Tanner D B, Williams G P, Hierschmugl C J, Dutta B, Wu X D, Etemad S 1996 Phys. Rev. B 54 700

    [17]

    Porte H P, Jepsen P U, Daghestani N, Rafailov E U, Turchinovich D 2009 Appl. Phys. Lett. 94 262104

    [18]

    Haiml M, Grange R, Keller U 2004 Appl. Phys. B 79 331

    [19]

    Cole K S, Cole R H 1941 J. Chem. Phys. 9 341

    [20]

    Jeon T I, Grischkowsky D 1997 Phys. Rev. Lett. 78 1106

    [21]

    Jeon T I, Grischkowsky D 1998 Appl. Phys. Lett. 72 2259

    [22]

    Mics Z, Angio A D, Jensen S A, Bonn M, Turchinovich D 2013 Appl. Phys. Lett. 102 231120

    [23]

    Kostakis I, Missous M 2013 AIP Adv. 3 092131

    [24]

    Kostakis I, Saeedkia D, Missous M 2012 IEEE Trans. Terahertz Sci. Technol. 2 617

  • [1] 柏文庆, 杨江涛, 杨翠红, 陈云云. 电磁场调制下的应变黑磷烯带间光电导. 物理学报, 2024, 73(13): 137803. doi: 10.7498/aps.73.20240445
    [2] 吴洋, 胡晓, 刘博文, 顾溢, 查访星. In0.52Al0.48As/InP的正向和反向异质结在带隙附近的不同光谱现象. 物理学报, 2024, 73(2): 027801. doi: 10.7498/aps.73.20231339
    [3] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [4] 钟梓源, 何凯, 苑云, 汪韬, 高贵龙, 闫欣, 李少辉, 尹飞, 田进寿. 低温生长铝镓砷光折变效应的研究. 物理学报, 2019, 68(16): 167801. doi: 10.7498/aps.68.20190459
    [5] 金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨. 稀土正铁氧体中THz自旋波的相干调控与强耦合研究进展. 物理学报, 2019, 68(16): 167501. doi: 10.7498/aps.68.20190706
    [6] 魏相飞, 何锐, 张刚, 刘向远. InAs/GaSb量子阱中太赫兹光电导特性. 物理学报, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [7] 赵静, 余辉龙, 刘伟伟, 郭婧. 砷化镓光电阴极光谱响应与吸收率关系分析. 物理学报, 2017, 66(22): 227801. doi: 10.7498/aps.66.227801
    [8] 施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展. 物理学报, 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [9] 陈小兰, 张耘, 冉启义. 掺铁铌酸锂晶体的光电导衰减特性研究. 物理学报, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [10] 郑鑫, 江天, 程湘爱, 江厚满, 陆启生. 波段外激光辐照光导型InSb探测器的一种新现象. 物理学报, 2012, 61(4): 047302. doi: 10.7498/aps.61.047302
    [11] 王广涛, 张敏平, 李珍, 郑立花. KCrF3中的轨道有序及其成因. 物理学报, 2012, 61(3): 037102. doi: 10.7498/aps.61.037102
    [12] 董占民, 孙红三, 许佳, 李一, 孙家林. 宏观长Ag2S纳米线簇的制备及其温度电导特性和光电导特性. 物理学报, 2011, 60(7): 077304. doi: 10.7498/aps.60.077304
    [13] 贾婉丽, 施 卫, 屈光辉, 孙小芳. GaAs光电导天线辐射太赫兹波功率的计算. 物理学报, 2008, 57(9): 5425-5428. doi: 10.7498/aps.57.5425
    [14] 贾婉丽, 施 卫, 纪卫莉, 马德明. 光电导开关产生太赫兹电磁波双极特性分析. 物理学报, 2007, 56(7): 3845-3850. doi: 10.7498/aps.56.3845
    [15] 施 卫, 马德明, 赵 卫. 用光电导开关产生稳幅ps量级时间晃动超快电脉冲的研究. 物理学报, 2004, 53(6): 1716-1720. doi: 10.7498/aps.53.1716
    [16] 束正煌, 董锦明. 轨道序对半掺杂锰氧化物光学性质的影响. 物理学报, 2003, 52(11): 2918-2922. doi: 10.7498/aps.52.2918
    [17] 张世斌, 孔光临, 徐艳月, 王永谦, 刁宏伟, 廖显伯. 微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化. 物理学报, 2002, 51(1): 111-114. doi: 10.7498/aps.51.111
    [18] 张德恒, 刘云燕, 张德骏. 用MOCVD方法制备的n型GaN薄膜紫外光电导. 物理学报, 2001, 50(9): 1800-1804. doi: 10.7498/aps.50.1800
    [19] 袁先漳, 裴慧元, 陆卫, 李宁, 史国良, 方家熊, 沈学础. Zn0.04Cd0.96Te中深能级的红外光电导谱研究. 物理学报, 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [20] 莫党, 潘士宏, W. E. SPICER, I. LINDAU. 砷化镓上银和金膜的价带光电子谱. 物理学报, 1983, 32(11): 1467-1470. doi: 10.7498/aps.32.1467
计量
  • 文章访问数:  6972
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-07
  • 修回日期:  2017-01-19
  • 刊出日期:  2017-04-05

/

返回文章
返回