搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温生长铝镓砷光折变效应的研究

钟梓源 何凯 苑云 汪韬 高贵龙 闫欣 李少辉 尹飞 田进寿

引用本文:
Citation:

低温生长铝镓砷光折变效应的研究

钟梓源, 何凯, 苑云, 汪韬, 高贵龙, 闫欣, 李少辉, 尹飞, 田进寿

Photorefractive effect of low-temperature-grown aluminum gallium arsenide

Zhong Zi-Yuan, He Kai, Yuan Yun, Wang Tao, Gao Gui-Long, Yan Xin, Li Shao-Hui, Yin Fei, Tian Jin-Shou
PDF
HTML
导出引用
  • 三元化合物铝镓砷(AlGaAs)是一种可用于全光固体超快诊断技术的重要材料.基于低温外延技术的AlGaAs材料不仅具有低温生长砷化镓(low-temperature grown GaAs, LT-GaAs)超短载流子寿命的特点, 并且可以调整材料的禁带宽度, 为超快诊断系统的设计增加了极大的灵活性. 泵浦-探测实验结果表明, 低温外延生长可以有效加速AlGaAs材料的非平衡载流子复合, 非平衡载流子弛豫时间小于300 fs, 而非平衡载流子的复合时间低至2.08 ps. 由于经过特殊的钝化工艺处理, 极大地降低了表面复合对载流子衰退过程的影响, 而低温外延生长引入的As原子团簇, 形成了深能级缺陷, 是加速载流子复合的主要因素. 基于单复合中心的间接复合理论, 建立LT-AlGaAs载流子演化模型, 获得与复合速率相关的关键物理参量: 载流子俘获面积σe = 6.6×10—14 cm2, σh = 4.7×10—15 cm2, 计算结果与实验相符. 该方法可用于半导体材料载流子演化特性定量分析, 有助于推进超快响应半导体材料的优化改进.
    The ternary compound aluminum gallium arsenide is an important material that can be used in all-optical solid-state ultrafast diagnostic technology. The low-temperature-epitaxially-grown AlGaAs (LT-AlGaAs) not only has the characteristics of ultra-short carrier lifetime of low-temperature-grown gallium arsenide (LT-GaAs), but also possesses the advantage of adjustability of band gap, which will provide great flexibility for the design of ultra-fast diagnostic systems. We use low-temperature epitaxial growth technology to grow AlGaAs on a GaAs substrate. The low-temperature-grown AlGaAs can effectively absorb 400 nm pump light to generate excess carrier. Therefore, we use a femtosecond laser with a wavelength of 800 nm and a pulse width of 200 fs as a light source to generate 400-nm pump light after passing through the BBO crystal, and 800 nm light without frequency doubling as the probe light. Using such a light source, we build a pump probe experimental platform to test the LT-AlGaAs. We normalize the experimental results and deconvolute it with the normalized laser pulses to obtain the response function of the semiconductor to the pump light. Therefore, we know that the nonequilibrium carrier relaxation time is less than 300 fs, and the nonequilibrium carrier recombination time is 2.08 ps. Due to the special passivation process, the effect of surface recombination on the carrier decay process is greatly reduced. The As clusters introduced by low-temperature epitaxial growth form deep level defects are the main factor for accelerating carrier recombination. In order to understand the complex process of photogenerated nonequilibrium carriers in depth, we use the indirect recombination theory of single recombination center to calculate the carrier recombination process, and establish an LT-AlGaAs carrier evolution model. Thus we obtain the key physical parameter related to the recombination rate, which is the carrier trapping area. We also use a theoretical model of carrier-regulated refractive index to calculate the effect of carrier concentration on the amount of change in refractive index. Combining our AlGaAs carrier evolution model, we simulate the refractive index change process of LT-AlGaAs after being illuminated by pump light. The simulation results are in good agreement with the experimental results. The method can be used for the quantitative analysis of carrier evolution characteristics of semiconductor materials, and it can conduce to the optimization and improvement of ultra-fast response semiconductor materials.
      通信作者: 何凯, hekai@opt.ac.cn ; 田进寿, tianjs@opt.ac.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 71705255)资助的课题.
      Corresponding author: He Kai, hekai@opt.ac.cn ; Tian Jin-Shou, tianjs@opt.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 71705255).
    [1]

    顾礼, 宗方轲, 李翔, 张敬金, 张驰, 杨勤劳 2015 强激光与粒子束 27 062011

    Gu L, Zong F K, Li X, Zhang J J, Zhang C, Yang Q L 2015 High Pow. Las. Part. Beam 27 062011

    [2]

    潘京生, 亓鲁, 肖洪亮, 张蓉, 周建勋, 蒲冬冬, 吕景文 2012 物理学报 61 194211Google Scholar

    Pan J S, Qi L, Xiao H L, Zhang R, Zhou J X, Pu D D, Lü J W 2012 Acta Phys. Sin. 61 194211Google Scholar

    [3]

    Bradley D K, Bell P M, Landen O L, Kilkenny J D, Oertel J 1995 Rev. Sci. Instrum. 66 716Google Scholar

    [4]

    Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W, Remington B A 2013 Appl. Phys. Lett. 103 151111Google Scholar

    [5]

    梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴 2014 物理学报 63 060702Google Scholar

    Liang L L, Tian J S, Wang T, Li F L, Gao G L, Wang J F, Wang C, Lu Y, Xu X Y, Cao X B, Wen W L, Xin L W, Liu H L, Wang X 2014 Acta Phys. Sin. 63 060702Google Scholar

    [6]

    王博, 白永林, 曹伟伟, 徐鹏, 刘百玉, 缑永胜, 朱炳利, 候洵 2015 物理学报 64 200701Google Scholar

    Wang B, Bau Y L, Cao W W, Xu P, Liu B Y, Gou Y S, Zhu B L, Hou X 2015 Acta Phys. Sin. 64 200701Google Scholar

    [7]

    Gao G, He K, Tian J, Zhang C, Zhang J, Wang T, Chen S, Jia H, Yuan F, Liang L, Yan X, Li S, Wang C, Yin F 2017 Opt. Express 25 8721Google Scholar

    [8]

    Bennett B R, Soref R A, Alamo J A D 1990 IEEE J. Quantum Electron. 26 113Google Scholar

    [9]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [10]

    Dankowski S U, Streb D, Ruff M, Kiesel P, Kneissl M, Knüpfer B, Döhler G H, Keil U D, Sørensen C B, Verma A K 1996 Appl. Phys. Lett. 68 37Google Scholar

    [11]

    Lochtefeld A J, Melloch M R, Chang J C P, Harmon E S 1996 Appl. Phys. Lett. 69 1465Google Scholar

    [12]

    Fleischer S, Beling C D, Fung S, Nieveen W R, Squire J E, Zheng J Q, Missous M 1997 J. Appl. Phys. 81 190Google Scholar

    [13]

    Khanna V K 2005 Progress in Quantum Electronics 29 59Google Scholar

    [14]

    夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国激光 45 0603002

    Xia N, Gang X, Rong T Y, Wan D K, Fang D, Tang J lL, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 Chin. J. Las. 45 0603002

    [15]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754Google Scholar

    [16]

    吕铁铮, 王韬, 钱列加, 鲁欣, 魏志义, 张杰 2002 物理学报 51 1268Google Scholar

    Lü T Z, Wang T Q, Qian L J, Lu X, Wei Z Y, Zhang J 2002 Acta Phys. Sin. 51 1268Google Scholar

    [17]

    Vernon S P, Lowry M E, Baker K L, Bennett C V, Celeste J R, Cerjan C, Haynes S, Hernandez V J, Hsing W W, Lacaille G A 2012 Rev. Sci. Instrum. 83 193

    [18]

    Lasher G, Stern F 1964 Phys. Rev. 133 553Google Scholar

    [19]

    Nilsson N G 1978 Appl. Phys. Lett. 33 653Google Scholar

    [20]

    Wolff P A 1962 Phys. Rev. 126 405Google Scholar

    [21]

    Moss T S, Burrell G J, Ellis B, Omar M A 1973 Semiconductor Opto‐Electronics (London: Butterworths) pp48-94

    [22]

    沈学础 2002 半导体光谱和光学性质(北京: 科学出版社)第20页

    Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science Press) p20 (in Chinese)

    [23]

    Alig R C, Bloom S 1975 Phys. Rev. Lett. 35 1522Google Scholar

    [24]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学(第7版) (北京: 电子工业出版社)第47页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Version 7) p47 (in Chinese)

    [25]

    Fang Z Q, Schlesinger T E, Milnes A G 1987 J. Appl. Phys. 61 5047Google Scholar

  • 图 1  (a)实验样品结构; (b)泵浦-探测实验光路图

    Fig. 1.  (a) Structure of experimental sample; (b) pump-probe experiments optical path.

    图 2  实验数据与拟合结果

    Fig. 2.  Experimental data and fitting results.

    图 3  带激励的SRH过程

    Fig. 3.  SRH process diagram with excitation.

    图 4  基于理论模型计算的折射率变化量与载流子浓度关系

    Fig. 4.  Relationship between refractive index change and carrier concentration based on theoretical model.

    图 5  基于带激励项的SRH过程的载流子浓度变化模型的计算结果

    Fig. 5.  Calculation results of carrier concentration variation model based on SRH process with excitation term.

    图 6  泵浦-探测反射实验数据和基于光诱导折射率超快变化模型计算结果

    Fig. 6.  Experimental data and calculation results based on light-induced refractive index ultrafast change model.

    图 7  两次实验与模拟计算的结果对比

    Fig. 7.  Comparison of results between two experiments and simulation calculations.

    表 1  实验激光参量

    Table 1.  Laser parameters in experiment.

    参量数值
    单脉冲泵浦光能量Es/nJ2
    泵浦光斑直径dpump/μm75
    泵浦光入射深度l/nm20
    探测光斑直径dprobe/μm70
    下载: 导出CSV

    表 2  实验数据的拟合结果

    Table 2.  Fitting results of experimental data.

    物理参量数值
    A0.0082
    t0/ps0.5
    τin/ps0.44
    τre/ps2.08
    下载: 导出CSV

    表 3  LT-AlGaAs载流子浓度导致折射率变化的相关参量

    Table 3.  Parameters related to carrier-mediated refractive index change in LT-AlGaAs.

    物理参量数值物理参量数值
    me/m00.088Eg/eV1.79
    mlh/m00.102C/cm–1·s–1/24.6 × 1012
    mhh/m00.59Clh/cm–1·s–1/21.5 × 1012
    μelh/m00.047Chh/cm–1·s–1/23.1 × 1012
    μehh/m00.076εs12
    下载: 导出CSV

    表 4  电子与空穴的俘获系数和发射系数

    Table 4.  Capture and emission coefficients of electrons and holes.

    物理参量数值
    re/cm3·s–12.6 × 10–6
    rh/cm3·s–17.2 × 10–8
    se/cm3·s–1640
    sh/cm3·s–11400
    下载: 导出CSV
  • [1]

    顾礼, 宗方轲, 李翔, 张敬金, 张驰, 杨勤劳 2015 强激光与粒子束 27 062011

    Gu L, Zong F K, Li X, Zhang J J, Zhang C, Yang Q L 2015 High Pow. Las. Part. Beam 27 062011

    [2]

    潘京生, 亓鲁, 肖洪亮, 张蓉, 周建勋, 蒲冬冬, 吕景文 2012 物理学报 61 194211Google Scholar

    Pan J S, Qi L, Xiao H L, Zhang R, Zhou J X, Pu D D, Lü J W 2012 Acta Phys. Sin. 61 194211Google Scholar

    [3]

    Bradley D K, Bell P M, Landen O L, Kilkenny J D, Oertel J 1995 Rev. Sci. Instrum. 66 716Google Scholar

    [4]

    Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W, Remington B A 2013 Appl. Phys. Lett. 103 151111Google Scholar

    [5]

    梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴 2014 物理学报 63 060702Google Scholar

    Liang L L, Tian J S, Wang T, Li F L, Gao G L, Wang J F, Wang C, Lu Y, Xu X Y, Cao X B, Wen W L, Xin L W, Liu H L, Wang X 2014 Acta Phys. Sin. 63 060702Google Scholar

    [6]

    王博, 白永林, 曹伟伟, 徐鹏, 刘百玉, 缑永胜, 朱炳利, 候洵 2015 物理学报 64 200701Google Scholar

    Wang B, Bau Y L, Cao W W, Xu P, Liu B Y, Gou Y S, Zhu B L, Hou X 2015 Acta Phys. Sin. 64 200701Google Scholar

    [7]

    Gao G, He K, Tian J, Zhang C, Zhang J, Wang T, Chen S, Jia H, Yuan F, Liang L, Yan X, Li S, Wang C, Yin F 2017 Opt. Express 25 8721Google Scholar

    [8]

    Bennett B R, Soref R A, Alamo J A D 1990 IEEE J. Quantum Electron. 26 113Google Scholar

    [9]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [10]

    Dankowski S U, Streb D, Ruff M, Kiesel P, Kneissl M, Knüpfer B, Döhler G H, Keil U D, Sørensen C B, Verma A K 1996 Appl. Phys. Lett. 68 37Google Scholar

    [11]

    Lochtefeld A J, Melloch M R, Chang J C P, Harmon E S 1996 Appl. Phys. Lett. 69 1465Google Scholar

    [12]

    Fleischer S, Beling C D, Fung S, Nieveen W R, Squire J E, Zheng J Q, Missous M 1997 J. Appl. Phys. 81 190Google Scholar

    [13]

    Khanna V K 2005 Progress in Quantum Electronics 29 59Google Scholar

    [14]

    夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国激光 45 0603002

    Xia N, Gang X, Rong T Y, Wan D K, Fang D, Tang J lL, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 Chin. J. Las. 45 0603002

    [15]

    Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754Google Scholar

    [16]

    吕铁铮, 王韬, 钱列加, 鲁欣, 魏志义, 张杰 2002 物理学报 51 1268Google Scholar

    Lü T Z, Wang T Q, Qian L J, Lu X, Wei Z Y, Zhang J 2002 Acta Phys. Sin. 51 1268Google Scholar

    [17]

    Vernon S P, Lowry M E, Baker K L, Bennett C V, Celeste J R, Cerjan C, Haynes S, Hernandez V J, Hsing W W, Lacaille G A 2012 Rev. Sci. Instrum. 83 193

    [18]

    Lasher G, Stern F 1964 Phys. Rev. 133 553Google Scholar

    [19]

    Nilsson N G 1978 Appl. Phys. Lett. 33 653Google Scholar

    [20]

    Wolff P A 1962 Phys. Rev. 126 405Google Scholar

    [21]

    Moss T S, Burrell G J, Ellis B, Omar M A 1973 Semiconductor Opto‐Electronics (London: Butterworths) pp48-94

    [22]

    沈学础 2002 半导体光谱和光学性质(北京: 科学出版社)第20页

    Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science Press) p20 (in Chinese)

    [23]

    Alig R C, Bloom S 1975 Phys. Rev. Lett. 35 1522Google Scholar

    [24]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学(第7版) (北京: 电子工业出版社)第47页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Version 7) p47 (in Chinese)

    [25]

    Fang Z Q, Schlesinger T E, Milnes A G 1987 J. Appl. Phys. 61 5047Google Scholar

  • [1] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦. 物理学报, 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [2] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [3] 布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰. 2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究. 物理学报, 2020, 69(10): 103301. doi: 10.7498/aps.69.20200092
    [4] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱. 物理学报, 2017, 66(8): 087801. doi: 10.7498/aps.66.087801
    [5] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [6] 张强, 王建元, 罗炳成, 邢辉, 金克新, 陈长乐. La1.3Sr1.7Mn2O7/SrTiO3-Nb异质结的整流和光伏特性. 物理学报, 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [7] 师丽红, 阎文博, 申绪男, 陈贵锋, 陈洪建, 乔会宾, 贾芳芳, 林爱调. 掺铁铌酸锂晶体中光致散射的锂组分和温度依赖关系研究. 物理学报, 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [8] 滕利华, 王霞, 赖天树. GaAs中带填充效应与带隙重整化效应的竞争. 物理学报, 2011, 60(4): 047201. doi: 10.7498/aps.60.047201
    [9] 贾婉丽, 施 卫, 纪卫莉, 马德明. 光电导开关产生太赫兹电磁波双极特性分析. 物理学报, 2007, 56(7): 3845-3850. doi: 10.7498/aps.56.3845
    [10] 高成勇, 夏海瑞, 徐建强, 司书春, 张怀金, 王继杨, 宋化龙. Ca2+掺杂铌酸锶钡晶体的光折射变化特性研究. 物理学报, 2007, 56(8): 4648-4652. doi: 10.7498/aps.56.4648
    [11] 胡 易. 一般切割面的铋硅族氧化物光折变增益特性及动态光栅优化. 物理学报, 2005, 54(11): 5428-5434. doi: 10.7498/aps.54.5428
    [12] 江 俊, 李 宁, 陈贵宾, 陆 卫, 王明凯, 杨学平, 吴 刚, 范耀辉, 李永贵, 袁先漳. FEL诱导半导体材料非线性光吸收. 物理学报, 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [13] 赵红娥, 刘思敏, 郭儒, 江瑛, 李飞飞, 陈晓虎, 汪大云, 温海东, 许京军. 非相干背景光辐照对LiNbO3∶Fe与LiNbO3∶Fe∶In晶体中二波耦合的控制. 物理学报, 2001, 50(11): 2149-2154. doi: 10.7498/aps.50.2149
    [14] 江瑛, 刘思敏, 温海东, 张心正, 郭儒, 陈晓虎, 许京军, 张光寅. 光生伏打LiNbO3:Fe晶体从自散焦到等效“自聚焦”的动态转换. 物理学报, 2001, 50(3): 483-488. doi: 10.7498/aps.50.483
    [15] 侯春风, 李师群, 李斌, 孙秀冬. 有外加电场的光伏光折变晶体中的非相干耦合亮-暗屏蔽光伏孤子对. 物理学报, 2001, 50(9): 1709-1712. doi: 10.7498/aps.50.1709
    [16] 侯春风, 阿不都热苏力, 杜春光, 孙秀冬, 李师群. 光折变有机聚合物中的空间孤子. 物理学报, 2001, 50(11): 2159-2165. doi: 10.7498/aps.50.2159
    [17] 李飞飞, 许京军, 刘思敏, 乔海军, 张光寅. c向切割LiNbO3∶Fe晶体中光折变光散射. 物理学报, 2001, 50(12): 2341-2344. doi: 10.7498/aps.50.2341
    [18] 佘卫龙, 余振新, 李荣基. 光折变“波导”诱失锁模ps激光脉冲自泵浦相位共轭. 物理学报, 1996, 45(12): 2010-2015. doi: 10.7498/aps.45.2010
    [19] 马海明, 李富铭. 砷化镓中微微秒光脉冲的自透射. 物理学报, 1989, 38(9): 1530-1533. doi: 10.7498/aps.38.1530
    [20] 王渭源. 用阶跃恢复法测定砷化镓结型(p-n和M-S结)两极管的载流子寿命. 物理学报, 1979, 28(3): 341-349. doi: 10.7498/aps.28.341
计量
  • 文章访问数:  8726
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-31
  • 修回日期:  2019-05-21
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回