-
高效可集成太赫兹波片和偏振片是重要的太赫兹光学元器件. 由传统的石英晶体及液晶等材料制作的太赫兹波片和偏振片由于其对太赫兹光响应度低并难于集成而难以应用于太赫兹集成光学领域. 为了寻找用以制备高效可集成太赫兹偏振元件的材料, 本工作应用太赫兹焦平面成像方法研究了
$\left\langle {100} \right\rangle $ 晶向的氧化镁晶体对太赫兹波段圆偏振光偏振态的影响. 通过实验观察到氧化镁晶体可以使入射的圆偏振光转化成为线偏振光. 为了进一步验证氧化镁晶体对太赫兹光相位的影响, 还应用透射式太赫兹时域光谱系统测量了氧化镁晶体在太赫兹波段的寻常光和非寻常光的折射率. 通过对比氧化镁晶体中寻常光和非寻常光的位相差, 证明氧化镁晶体在太赫兹焦平面成像实验中起到了1/4波片的作用. 这一结果表明氧化镁晶体是一种制备太赫兹频段可集成波片及其相关偏振器件的重要材料.Fabricating integratable and high-efficiency optical polarization devices is one of the fundamentally important challenges in the field of terahertz optics. Compared with the traditional polarization materials such as quartz crystal and liquid crystal, MgO crystal is one of the most important potential candidates for fabricating terahertz optical devices due to its high transmittance in terahertz frequency region. To determine the birefringence characteristics of MgO crystal in the terahertz frequency region, the modulation of the polartization state of a terahtertz wave through a$\left\langle {100} \right\rangle $ crystalline MgO flake is studied using terahertz focal plane imaging method. Within this approach, the polarization of a terahertz wave can be intuitively identified from the imaging of the amplitude and the phase of the z-direction component of terahertz electronic field. By measuring the imaging of both the amplitude and the phase of terahertz field with and without passing through the$\left\langle {100} \right\rangle $ crystalline MgO flake, it is found that the left and right circularly polarized light are converted into perpendicular linearly-polarized light after passing through the MgO flake. The polarization direction of the linearly polarized light changes with the rotating of MgO flake along the direction perpendicular to the light propagation. The conversion between the linearly polarized light and the circularly polarized light is analyzed by using the Jones matrix approach. These properties indicate that the$\left\langle {100} \right\rangle $ crystalline MgO flake acts as a quarter wave plate for terahertz waves. To further identify the character of terahertz quarter wave plate, the refractive index of the ordinary and extrordinary light within terahertz frequency region of crystalline MgO crystal are measured by using transmission terahertz time-domain spectroscopy system. By comparing the phase difference between the ordinary and extraordinary light after passing through the MgO flake, it is shown that a quarter of wavelength difference between the ordinary and extraordinary light is obtained. These results indicate that the$\left\langle {100} \right\rangle $ crystalline MgO crystals can be used to fabricate quarter wave plates and relevant polarization devices in the terahertz band.-
Keywords:
- terahertz /
- focal plane imagine /
- birefringence
[1] 成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2005 太赫兹科学与电子信息学报 13 843
Cheng B B, Li H P, An J F, Jiang G, Deng X J, Zhang J 2005 J. Terahertz Sci. Electron. Inf. Technol. 13 843
[2] 沈飞, 应义斌 2009 光谱学与光谱分析 29 1445Google Scholar
Shen F, Ying Y B 2009 Spectrosc. Spectral Anal. 29 1445Google Scholar
[3] Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853Google Scholar
[4] 韩晓, 安景新, 钟玲玲 2018 电子世界 3 5
Han X, An J X, Zhong L L 2018 Electron. World 3 5
[5] 苏兴华, 于春香, 王瀚卿 2014 太赫兹科学与电子信息学报 12 37
Su X H, Yu C X, Wang H Q 2014 J. Terahertz Sci. Electron. Inf. Technol. 12 37
[6] Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R 2007 Chem. Phys. Lett. 434 227Google Scholar
[7] Feng W 2012 J. Semicond. 33 0310011
[8] Corinna L, Dandolo K, Filtenborg T, Skou-Hansen J, Jepsen P U 2015 Appl. Phys. A 121 981Google Scholar
[9] Han P Y, CHO G C, Zhang X C 2000 Opt. Lett. 25 242Google Scholar
[10] Gong Y D, Dong H, Hong M H 2009 34th International Conference On Infrared, Millimeter, And Terahertz Waves 1-2 57
[11] Ramonova A G, Kibizov D D, Kozyrev E N, Zaalishvili V B, Grigorkina G S, Fukutani K, Magkoev T T 2018 Russ. J. Phys. Chem. A 92 122
[12] Ren G H, Zhao H W, Zhang J B, Tian Z, Gu J Q, Ouyang C M, Han J G, Zhang W L 2017 Infrared Laser Eng. 46 08250011
[13] Wiesauer K, Jordens C 2013 J. Infrared Milli Terahz Waves 34 663Google Scholar
[14] Nick C J, van der Valk, Willemine A M, van der Marel, Paul C M, Planken 2005 Opt. Lett. 30 2802Google Scholar
[15] Kanda N, Konishi K, Kuwata-Gonokami M 2007 Opt. Express 15 11117Google Scholar
[16] Zhang R X, Cui Y, Sun W F, Zhang Y 2008 Appl. Opt. 47 6422Google Scholar
[17] Wang X K, Cui Y, Sun W F, Ye J S, Zhang Y 2010 J. Opt. Soc. Am. A 27 2387Google Scholar
[18] Wang X K, Shi J, Sun W F, Feng S F, Han P, Ye J S, Zhang Y 2016 Opt. Express 24 7178Google Scholar
[19] Wang X K, Wang S, Xie Z W, Sun W F, Feng S F, Cui Y, Ye J S, Zhang Y 2014 Opt. Express 22 24622Google Scholar
[20] Shang Y J, Wang X K, Sun W F, Han P, Yu Y, Feng S F, Ye J S, Zhang Y 2018 Opt. Lett. 43 5508Google Scholar
[21] Fu M X, Quan B G, He J W, Yao Z H, Gu C Z, Li J J, Zhang Y 2016 Appl. Phys. Lett. 108 1219041
[22] Boivin A, Wolf E 1965 Phys. Rev. 138 B1561Google Scholar
[23] 沈长宇, 金尚忠 2017 光学原理 (第2版) (北京: 清华大学出版社) 第184−188页
Shen C Y, Jin S Z 2017 Principles of Optics (2th Ed.) (Beijing: Tsinghua University Press) pp184−188 (in Chinese)
[24] 姚启钧 2014 光学教程 (北京: 高等教育出版社) 第224页
Yao Q J 2014 Optical Tutorial (Beijing: Higher Education Press) p224 (in Chinese)
-
图 3 (a) 左旋圆偏振光和右旋圆偏振光的相位和振幅图像; (b) 振动方向与水平夹角为0°, 50°, 90°和140°方向的线偏振光的相位和振幅图像. 上面为相位图像, 下面为振幅图像, 模拟频率均为0.62 THz
Fig. 3. (a) Phase and amplitude images of left circular polarization and right circular polarization; (b) phase and amplitude images of linear polarization with 0°, 50°, 90° and 140°angles between the vibration direction and the horizontal. The top is the phase image, the bottom is the amplitude image, the simulation frequency is 0.62 THz.
图 5 (a), (b)空气、o光和e光的时域信号和频域信号; (c) o光和e光的折射率; (d) 在不同频率下o光和e光的折射率差值与波长之间的关系
Fig. 5. (a), (b) The time domain signal and the frequency domain signal of air, ordinary light, and extraordinary light respectively; (c) the real part of the refractive index of ordinary light and extraordinary light; (d) relationship between the refractive index difference and wavelength at different frequencies.
-
[1] 成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2005 太赫兹科学与电子信息学报 13 843
Cheng B B, Li H P, An J F, Jiang G, Deng X J, Zhang J 2005 J. Terahertz Sci. Electron. Inf. Technol. 13 843
[2] 沈飞, 应义斌 2009 光谱学与光谱分析 29 1445Google Scholar
Shen F, Ying Y B 2009 Spectrosc. Spectral Anal. 29 1445Google Scholar
[3] Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med. Biol. 47 3853Google Scholar
[4] 韩晓, 安景新, 钟玲玲 2018 电子世界 3 5
Han X, An J X, Zhong L L 2018 Electron. World 3 5
[5] 苏兴华, 于春香, 王瀚卿 2014 太赫兹科学与电子信息学报 12 37
Su X H, Yu C X, Wang H Q 2014 J. Terahertz Sci. Electron. Inf. Technol. 12 37
[6] Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R 2007 Chem. Phys. Lett. 434 227Google Scholar
[7] Feng W 2012 J. Semicond. 33 0310011
[8] Corinna L, Dandolo K, Filtenborg T, Skou-Hansen J, Jepsen P U 2015 Appl. Phys. A 121 981Google Scholar
[9] Han P Y, CHO G C, Zhang X C 2000 Opt. Lett. 25 242Google Scholar
[10] Gong Y D, Dong H, Hong M H 2009 34th International Conference On Infrared, Millimeter, And Terahertz Waves 1-2 57
[11] Ramonova A G, Kibizov D D, Kozyrev E N, Zaalishvili V B, Grigorkina G S, Fukutani K, Magkoev T T 2018 Russ. J. Phys. Chem. A 92 122
[12] Ren G H, Zhao H W, Zhang J B, Tian Z, Gu J Q, Ouyang C M, Han J G, Zhang W L 2017 Infrared Laser Eng. 46 08250011
[13] Wiesauer K, Jordens C 2013 J. Infrared Milli Terahz Waves 34 663Google Scholar
[14] Nick C J, van der Valk, Willemine A M, van der Marel, Paul C M, Planken 2005 Opt. Lett. 30 2802Google Scholar
[15] Kanda N, Konishi K, Kuwata-Gonokami M 2007 Opt. Express 15 11117Google Scholar
[16] Zhang R X, Cui Y, Sun W F, Zhang Y 2008 Appl. Opt. 47 6422Google Scholar
[17] Wang X K, Cui Y, Sun W F, Ye J S, Zhang Y 2010 J. Opt. Soc. Am. A 27 2387Google Scholar
[18] Wang X K, Shi J, Sun W F, Feng S F, Han P, Ye J S, Zhang Y 2016 Opt. Express 24 7178Google Scholar
[19] Wang X K, Wang S, Xie Z W, Sun W F, Feng S F, Cui Y, Ye J S, Zhang Y 2014 Opt. Express 22 24622Google Scholar
[20] Shang Y J, Wang X K, Sun W F, Han P, Yu Y, Feng S F, Ye J S, Zhang Y 2018 Opt. Lett. 43 5508Google Scholar
[21] Fu M X, Quan B G, He J W, Yao Z H, Gu C Z, Li J J, Zhang Y 2016 Appl. Phys. Lett. 108 1219041
[22] Boivin A, Wolf E 1965 Phys. Rev. 138 B1561Google Scholar
[23] 沈长宇, 金尚忠 2017 光学原理 (第2版) (北京: 清华大学出版社) 第184−188页
Shen C Y, Jin S Z 2017 Principles of Optics (2th Ed.) (Beijing: Tsinghua University Press) pp184−188 (in Chinese)
[24] 姚启钧 2014 光学教程 (北京: 高等教育出版社) 第224页
Yao Q J 2014 Optical Tutorial (Beijing: Higher Education Press) p224 (in Chinese)
计量
- 文章访问数: 6688
- PDF下载量: 97
- 被引次数: 0