搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

去除光学器件弹光双折射的方法

李长胜 陈佳

引用本文:
Citation:

去除光学器件弹光双折射的方法

李长胜, 陈佳

How to eliminate unwanted elasto-optical birefringence from optical devices

Li Chang-Sheng, Chen Jia
PDF
导出引用
  • 在电光、磁光调制器和传感器等光学器件的制作和使用过程中, 经常会产生影响器件性能的弹光双折射. 根据折射率椭球分析法, 通过系统分析各晶系晶体的弹光效应, 提出了若干去除光学器件中静态弹光双折射的方法. 主要结论包括: 对于正交晶系的双轴晶体, 当光波沿着晶体任意一个主轴方向传播时, 如果作用于晶体另外两个主轴方向的应力能够满足某一与晶体自身参数有关的倍数关系且不存在剪切应力, 则可以去除这两个应力引起的弹光双折射; 对利用所有单轴晶体, 43 m, 432, m3 m点群的立方晶体和匀质光学玻璃制作的光学器件, 如果能够保持晶体沿着x1, x2轴方向的正应力相等且不存在剪切应力, 或只对晶体施加x3方向的正应力, 也可以避免沿着晶体主光轴xsub3方向传播光波的弹光双折射. 上述去除弹光双折射的方法对光学器件的设计、制作和使用具有重要参考价值.
    There often appears unwanted elasto-optical birefringence in optical devices such as electro-optical, magneto-optical modulators and sensors when they are manufactured and used. This kind of elasto-optical birefringence causes unwanted effect for optical device and needs to be removed. Based on the method of index ellipsoid analysis, we theoretically analyze elasto-optical effects in various point groups of optical crystals and glasses, and accordingly propose some methods to eliminate unwanted elasto-optical birefringences in optical crystals and glasses. Main conclusions show that for orthorhombic biaxial crystal and the light wave propagating along any one crystalline axis of the crystal, if there is no shearing stress and the two external normal stresses applied to the other two crystalline axes can keep a constant ratio related to crystal parameters including refractive index and photoelastic constants, then unwanted elasto-optical birefringence can be eliminated from relevant optical devices, typical crystals include potassium titanium oxide phosphate (KTiOPO4, KTP) crystal and rubidium titanium oxide phosphate (RbTiOPO4, RTP) crystal, which are usually used as electrooptic Q-switchers in laser systems. For all the uniaxial crystyals such as potassium dihydron phosphate (KH2PO4, KDP), beta-barium borate ( -BaB2O4, BBO) and lithiun niobate (LiNbO3, LN) crystals, cubic crystals of 43 m, 432, m3 m point groups such as bismuth germanate (Bi4Ge3O12, BGO) crystal, and optical glasses, if the two normal stresses applied to the x1- and x2- crystalline axes of the crystal are equal to each other and there is no shearing stress, or there exists only one normal stress applied to the x3- crystalline axis of the crystal, then for the light wave propagating along the x3- crystalline axis, unwanted elasto-optical birefringence in relevant optical devices can also be eliminated. The above-proposed method to remove unwanted elasto-optical birefringence is benificial to design, manufacture, and usage of related optical devices.
      通信作者: 李长胜, cli@buaa.edu.cn
      Corresponding author: Li Chang-Sheng, cli@buaa.edu.cn
    [1]

    Nye J F 1957 Physical Properties of Crystals (London: Oxford University Press) pp241-259

    [2]

    Liao Y B 2003 Polarization Optics (Beijing: China Science Press) pp130-133, 137-155 (in Chinese) [廖延彪 2003 偏振光学(北京:科学出版社) 第 130133, 137155 页]

    [3]

    Li K W, Wang Z B, Chen Y H, Yang C Q, Zhang R 2015 Acta Phys. Sin. 64 184206 (in Chinese) [李克武, 王志斌, 陈友华, 杨常青, 张瑞 2015 物理学报 64 184206]

    [4]

    Li C S 2014 Acta Phys. Sin. 63 074207 (in Chinese) [李长胜 2014 物理学报 63 074207]

    [5]

    Li C S 2011 Appl. Opt. 50 5315

    [6]

    Li C S, Yuan Y 2014 Acta Opt. Sin. 34 0428001 (in Chinese) [李长胜, 袁媛 2014 光学学报 34 0428001]

    [7]

    Yariv A 1997 Optical Electronics in Modern Communications (5th Ed.) (London: Oxford University Press) pp326-367, 474-490

    [8]

    Chu W S, Heo S W, Oh M C 2014 J. Lightwave Technol. 32 4730

    [9]

    Chen Y H, Zhang J L, Wang Y C, Wei H C, Wang Z B, Zhang R, Wang L F 2012 Acta Opt. Sin. 32 1116002 (in Chinese) [陈友华, 张记龙, 王艳超, 魏海潮, 王志斌, 张瑞, 王立福 2012 光学学报 32 11160021]

    [10]

    Li C S, Cui X, Li B S, Liao Y B 2000 High Voltage Engineer. 26 40 (in Chinese) [李长胜, 崔翔, 李宝树, 廖延彪 2000 高电压技术 26 40]

    [11]

    Savchenkov A A, Liang W, Ilchenko V S, Dale E, Savchenkova E A, Matsko A B, Seidel D, Maleki L 2014 AIP Adv. 4 122901

    [12]

    Xu D X, Cheben P, Dalacu D, Delage A, Janz S, Lamontagne B, Picard M J, Ye W N 2004 Opt. Lett. 29 2384

    [13]

    Cen Z F, Li X T 2010 Acta Phys. Sin. 59 5784 (in Chinese) [岑兆丰, 李晓彤 2010 物理学报 59 5784]

    [14]

    Lee K S 1990 Appl. Opt. 29 4453

    [15]

    Perciante C D, Aparicio S, Illa R, Ferrari J A 2015 Appl. Opt. 54 5708

    [16]

    Wang P, Tian W, Wang R D, Wang L P 2013 Chin. Opt. 6 57 (in Chinese) [王平, 田伟, 王汝冬, 王立朋 2013 中国光学 6 57]

    [17]

    Chen W F, Wei Z J, Guo L, Hou L Y, Wang G, Wang J D, Zhang Z M, Guo J P, Liu S H 2014 Chin. Phys. B 23 080304

    [18]

    Khazanov E, Andreev N, Babin A, Kiselev A, Palashov O 2000 J. Opt. Soc. Am. B 17 99

    [19]

    Cao D X, Zhang X J, He S B, Wu D S, Zheng W G, Tan J C 2007 High Power Laser and Particle Beams 19 548 (in Chinese) [曹丁象, 张雄军, 贺少勃, 吴登生, 郑万国, 谭吉春 2007 强激光与粒子束 19 548]

    [20]

    Wang F Z, Chen B, Sun J, Dou F F, Zhang L, Hu Y Z, Xu J J 2013 J. Synth. Cryst. 42 1315 (in Chinese) [王富章, 陈彬, 孙军, 窦飞飞, 张玲, 胡永钊, 许京军 2013 人工晶体学报 42 1315]

    [21]

    Vyatkin A G, Khazanov E A 2015 IEEE J. Quantum Electron. 51 1700108

    [22]

    Huang J, Hu X H, Chen W B 2015 Chin. Opt. Lett. 13 021402

    [23]

    Zheng X P, Liao Y B 2000 Acta Opt. Sin. 20 1684 (in Chinese) [郑小平, 廖延彪 2000 光学学报 20 1684]

    [24]

    Zhang J, Zhang X J, Wu D S, Tian X L, Li M Z, Zheng K X 2011 Infrared and Laser Engineer. 40 1662 (in Chinese) [张君, 张雄军, 吴登生, 田晓琳, 李明中, 郑奎兴 2011 红外与激光工程 40 1662]

    [25]

    Li L J, Zhang W J, Li H, Pan R 2013 Appl. Opt. 52 8706

    [26]

    Wolfe R, Fratelio V J, McGlashan-Powell M 1987 Appl. Phys. Lett. 51 1221

    [27]

    Wang J Y, Guo Y J, Li J, Zhang H J 2010 Mater. China 29 49 (in Chinese) [王继扬, 郭永解, 李静, 张怀金 2010 中国材料进展 29 49]

    [28]

    Ebbers C A, Velsko S P 1995 Appl. Phys. Lett. 67 593

    [29]

    Li X M, Shen X J, Liu X, Wang L 2015 Acta Phys. Sin. 64 094205 (in Chinese) [李晓明, 沈学举, 刘恂, 王琳 2015 物理学报 64 094205]

    [30]

    Jaecklin A A, Lietz M 1972 Appl. Opt. 11 617

    [31]

    Liu G Q, Yue Z Q, Shen D F 2001 Magnetooptics (Shanghai: Shanghai Science Technology Press) pp165-189 (in Chinese) [刘公强, 乐志强, 沈德芳 2001 磁光学 (上海: 上海科学技术出版社) 第 165189 页].

  • [1]

    Nye J F 1957 Physical Properties of Crystals (London: Oxford University Press) pp241-259

    [2]

    Liao Y B 2003 Polarization Optics (Beijing: China Science Press) pp130-133, 137-155 (in Chinese) [廖延彪 2003 偏振光学(北京:科学出版社) 第 130133, 137155 页]

    [3]

    Li K W, Wang Z B, Chen Y H, Yang C Q, Zhang R 2015 Acta Phys. Sin. 64 184206 (in Chinese) [李克武, 王志斌, 陈友华, 杨常青, 张瑞 2015 物理学报 64 184206]

    [4]

    Li C S 2014 Acta Phys. Sin. 63 074207 (in Chinese) [李长胜 2014 物理学报 63 074207]

    [5]

    Li C S 2011 Appl. Opt. 50 5315

    [6]

    Li C S, Yuan Y 2014 Acta Opt. Sin. 34 0428001 (in Chinese) [李长胜, 袁媛 2014 光学学报 34 0428001]

    [7]

    Yariv A 1997 Optical Electronics in Modern Communications (5th Ed.) (London: Oxford University Press) pp326-367, 474-490

    [8]

    Chu W S, Heo S W, Oh M C 2014 J. Lightwave Technol. 32 4730

    [9]

    Chen Y H, Zhang J L, Wang Y C, Wei H C, Wang Z B, Zhang R, Wang L F 2012 Acta Opt. Sin. 32 1116002 (in Chinese) [陈友华, 张记龙, 王艳超, 魏海潮, 王志斌, 张瑞, 王立福 2012 光学学报 32 11160021]

    [10]

    Li C S, Cui X, Li B S, Liao Y B 2000 High Voltage Engineer. 26 40 (in Chinese) [李长胜, 崔翔, 李宝树, 廖延彪 2000 高电压技术 26 40]

    [11]

    Savchenkov A A, Liang W, Ilchenko V S, Dale E, Savchenkova E A, Matsko A B, Seidel D, Maleki L 2014 AIP Adv. 4 122901

    [12]

    Xu D X, Cheben P, Dalacu D, Delage A, Janz S, Lamontagne B, Picard M J, Ye W N 2004 Opt. Lett. 29 2384

    [13]

    Cen Z F, Li X T 2010 Acta Phys. Sin. 59 5784 (in Chinese) [岑兆丰, 李晓彤 2010 物理学报 59 5784]

    [14]

    Lee K S 1990 Appl. Opt. 29 4453

    [15]

    Perciante C D, Aparicio S, Illa R, Ferrari J A 2015 Appl. Opt. 54 5708

    [16]

    Wang P, Tian W, Wang R D, Wang L P 2013 Chin. Opt. 6 57 (in Chinese) [王平, 田伟, 王汝冬, 王立朋 2013 中国光学 6 57]

    [17]

    Chen W F, Wei Z J, Guo L, Hou L Y, Wang G, Wang J D, Zhang Z M, Guo J P, Liu S H 2014 Chin. Phys. B 23 080304

    [18]

    Khazanov E, Andreev N, Babin A, Kiselev A, Palashov O 2000 J. Opt. Soc. Am. B 17 99

    [19]

    Cao D X, Zhang X J, He S B, Wu D S, Zheng W G, Tan J C 2007 High Power Laser and Particle Beams 19 548 (in Chinese) [曹丁象, 张雄军, 贺少勃, 吴登生, 郑万国, 谭吉春 2007 强激光与粒子束 19 548]

    [20]

    Wang F Z, Chen B, Sun J, Dou F F, Zhang L, Hu Y Z, Xu J J 2013 J. Synth. Cryst. 42 1315 (in Chinese) [王富章, 陈彬, 孙军, 窦飞飞, 张玲, 胡永钊, 许京军 2013 人工晶体学报 42 1315]

    [21]

    Vyatkin A G, Khazanov E A 2015 IEEE J. Quantum Electron. 51 1700108

    [22]

    Huang J, Hu X H, Chen W B 2015 Chin. Opt. Lett. 13 021402

    [23]

    Zheng X P, Liao Y B 2000 Acta Opt. Sin. 20 1684 (in Chinese) [郑小平, 廖延彪 2000 光学学报 20 1684]

    [24]

    Zhang J, Zhang X J, Wu D S, Tian X L, Li M Z, Zheng K X 2011 Infrared and Laser Engineer. 40 1662 (in Chinese) [张君, 张雄军, 吴登生, 田晓琳, 李明中, 郑奎兴 2011 红外与激光工程 40 1662]

    [25]

    Li L J, Zhang W J, Li H, Pan R 2013 Appl. Opt. 52 8706

    [26]

    Wolfe R, Fratelio V J, McGlashan-Powell M 1987 Appl. Phys. Lett. 51 1221

    [27]

    Wang J Y, Guo Y J, Li J, Zhang H J 2010 Mater. China 29 49 (in Chinese) [王继扬, 郭永解, 李静, 张怀金 2010 中国材料进展 29 49]

    [28]

    Ebbers C A, Velsko S P 1995 Appl. Phys. Lett. 67 593

    [29]

    Li X M, Shen X J, Liu X, Wang L 2015 Acta Phys. Sin. 64 094205 (in Chinese) [李晓明, 沈学举, 刘恂, 王琳 2015 物理学报 64 094205]

    [30]

    Jaecklin A A, Lietz M 1972 Appl. Opt. 11 617

    [31]

    Liu G Q, Yue Z Q, Shen D F 2001 Magnetooptics (Shanghai: Shanghai Science Technology Press) pp165-189 (in Chinese) [刘公强, 乐志强, 沈德芳 2001 磁光学 (上海: 上海科学技术出版社) 第 165189 页].

  • [1] 刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光. 高反射腔镜双折射效应对腔增强光谱技术的影响. 物理学报, 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [2] 余晨, 杨华, 陈书圆. 基于各向异性晶体的光学微分运算. 物理学报, 2021, 70(5): 054202. doi: 10.7498/aps.70.20201184
    [3] 丁伟, 汪滢莹, 高寿飞, 洪奕峰, 王璞. 高性能反谐振空芯光纤导光机理与实验制作研究进展. 物理学报, 2018, 67(12): 124201. doi: 10.7498/aps.67.20180724
    [4] 李长胜. 电光与磁光效应的互补特性及其传感应用. 物理学报, 2015, 64(4): 047801. doi: 10.7498/aps.64.047801
    [5] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [6] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [7] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究. 物理学报, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [8] 汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯. 高双折射的混合格子太赫兹光子晶体光纤的设计与研究. 物理学报, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [9] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤. 物理学报, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [10] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [11] 延凤平, 李一凡, 王 琳, 龚桃荣, 刘 鹏, 刘 洋, 陶沛琳, 曲美霞, 简水生. 近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析. 物理学报, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [12] 刘小毅, 张方迪, 张 民, 叶培大. 基于谐振吸收效应的单模单偏振光子晶体光纤研究. 物理学报, 2007, 56(1): 301-307. doi: 10.7498/aps.56.301
    [13] 童永在, 王西安, 余本海, 胡雪惠. 电光效应的自相似性. 物理学报, 2006, 55(12): 6667-6672. doi: 10.7498/aps.55.6667
    [14] 曹 霞, 秦海燕, 成丽华. SiO2脊形条波导热极化引起的电光效应. 物理学报, 2006, 55(10): 5283-5287. doi: 10.7498/aps.55.5283
    [15] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [16] 吴丹丹, 佘卫龙. 双轴晶体电光调制器的最优设计. 物理学报, 2005, 54(1): 134-138. doi: 10.7498/aps.54.134
    [17] 胡 易. 一般切割面的铋硅族氧化物光折变增益特性及动态光栅优化. 物理学报, 2005, 54(11): 5428-5434. doi: 10.7498/aps.54.5428
    [18] 祁胜文, 杨秀芹, 陈 宽, 张春平, 张连顺, 王新宇, 许 棠, 柳永亮, 张光寅. 偶氮材料——乙基橙的光致双折射特性. 物理学报, 2005, 54(7): 3189-3193. doi: 10.7498/aps.54.3189
    [19] 尹 鑫, 王继扬. 旋光性与电光效应交互作用及其对旋光晶体电光Q开关的影响. 物理学报, 2004, 53(10): 3565-3570. doi: 10.7498/aps.53.3565
    [20] 陈开鑫, 衣茂斌, 张大明, 侯阿临. 基于F-P腔的极化聚合物的纵向电光调制. 物理学报, 2000, 49(8): 1611-1613. doi: 10.7498/aps.49.1611
计量
  • 文章访问数:  3305
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-09
  • 修回日期:  2015-11-01
  • 刊出日期:  2016-02-05

去除光学器件弹光双折射的方法

  • 1. 北京航空航天大学仪器科学与光电工程学院, 北京 100191
  • 通信作者: 李长胜, cli@buaa.edu.cn

摘要: 在电光、磁光调制器和传感器等光学器件的制作和使用过程中, 经常会产生影响器件性能的弹光双折射. 根据折射率椭球分析法, 通过系统分析各晶系晶体的弹光效应, 提出了若干去除光学器件中静态弹光双折射的方法. 主要结论包括: 对于正交晶系的双轴晶体, 当光波沿着晶体任意一个主轴方向传播时, 如果作用于晶体另外两个主轴方向的应力能够满足某一与晶体自身参数有关的倍数关系且不存在剪切应力, 则可以去除这两个应力引起的弹光双折射; 对利用所有单轴晶体, 43 m, 432, m3 m点群的立方晶体和匀质光学玻璃制作的光学器件, 如果能够保持晶体沿着x1, x2轴方向的正应力相等且不存在剪切应力, 或只对晶体施加x3方向的正应力, 也可以避免沿着晶体主光轴xsub3方向传播光波的弹光双折射. 上述去除弹光双折射的方法对光学器件的设计、制作和使用具有重要参考价值.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回