搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于各向异性晶体的光学微分运算

余晨 杨华 陈书圆

引用本文:
Citation:

基于各向异性晶体的光学微分运算

余晨, 杨华, 陈书圆

Anisotropic crystals based optical differential operation

Yu Chen, Yang Hua, Chen Shu-Yuan
PDF
HTML
导出引用
  • 光学微分运算是边缘图像的光学检测核心原理, 与传统的数字图像处理方法相比, 具有效率高、结构简单且无需考虑算法和功耗等优点. 本文提出一种基于各向异性晶体的光学微分运算装置, 用定制的晶体片实现光的空间分化, 从而实现多角谱分量下的全方位边缘成像. 本文中的方案需要将光束的左右旋圆偏振分量横向分离, 再对中间部分的线偏振光进行滤波处理. 该方案主要是基于各向异性晶体的双折射效应, 整个装置整合为一条笔直的光路, 与自旋霍尔效应和超表面相比, 具备原理简单、成本较低且成像稳定的优点, 不过对晶体的厚度有较高的要求. 实验结果也较为理想地验证了此方案, 未来可望在量子观测、生物细胞和医学等领域实现一定潜在应用.
    Optical differential operation is the core principle of optical detection of edge images. Compared with the traditional digital image processing methods, the optical differential operation has high efficiency, simple structure, and needless to consider algorithms and power consumption. An optical differential operation device based on anisotropic crystal is proposed in this paper. Omni-directional edge imaging under multi-angle spectral components is realized by using a customized crystal chip. The scheme is mainly based on the birefringence effect of anisotropic crystal. It needs to separate the left and right circularly polarized component of the beam horizontally, and then filter the linearly polarized light in the middle. The whole device is integrated into a straight optical path. Although it has higher requirements for the thickness of crystal, it is simpler, cheaper and more stable than spin Hall effect and super surface principle. The experimental results also demonstrate that the scheme can be used in quantum observation, biological cell and medicine.
      通信作者: 杨华, huayang@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61275137)和长沙市重点研发项目(批准号: 190102)资助的课题.
      Corresponding author: Yang Hua, huayang@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275137) and the Key Research and Development Program of Changsha, China (Grant No. 190102).
    [1]

    Caulfeld H J, Dolev S 2010 Nat. Photonics 4 261Google Scholar

    [2]

    Miller D A B 2009 IEEE 97 1166Google Scholar

    [3]

    Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z, 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11137Google Scholar

    [4]

    Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar

    [5]

    Zhou J, Qian H, Zhao J, Tang M, Wu Q, Lei M, Luo H, Wen S, Chen S, Liu Z 2020 Natl. Sci. Rev.Google Scholar

    [6]

    Liu W L, Li M, Guzzon R S, Norberg E J, Parker J S, Lu M Z, Coldren L A, Yao J P 2016 Nat. Photonics 10 190Google Scholar

    [7]

    Vourkas I, Stathis D, Sirakoulis G C 2018 IEEE Trans. Emerg. Top. Comput. 6 145

    [8]

    Willner A E, Khaleghi S, Chitgarha M R, Yilmaz O F 2014 J. Light Technol. 32 660Google Scholar

    [9]

    Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J 2009 Nat. Photonics 3 216Google Scholar

    [10]

    Corcoran B, Monat C, Pelusi M, Grillet C, White T P, Faolain L O, Krauss T F, Eggleton B J, Moss D J 2010 Opt. Express 18 7770Google Scholar

    [11]

    Momeni A, Rajabalipanah H, Abdolali A, Achouri K 2019 Phys. Rev. Appl. 11 064042Google Scholar

    [12]

    Kwon H, Sounas D, Cordaro A, Polman A, Alu? A 2018 Phys. Rev. Lett. 121 173004Google Scholar

    [13]

    Shimotsuma Y, Kazansky P G, Qiu J, Hirao K 2003 Phys. Rev. Lett. 91 247405Google Scholar

    [14]

    Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901Google Scholar

    [15]

    Bliokh K Y, Bliokh Y P 2006 Phys. Rev. Lett. 96 073903Google Scholar

    [16]

    Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C, Chen S Z, Luo H L, Wen S C, Fan D Y 2015 Light-Sci. Appl. 4 e290Google Scholar

    [17]

    Ling X H, Zhou X, Huang K, Y. Liu Y, Qiu C W, Luo H, Wen S 2017 Rep. Prog. Phys. 80 066401Google Scholar

    [18]

    Mi C, Chen S, Zhou X, Tian K, Luo H, Wen S 2017 Phot. Res. 5 92Google Scholar

    [19]

    He S S, Zhou J X, Chen S Z, Shu W X, Luo H L, Wen S C 2020 Opt. Lett. 45 877Google Scholar

    [20]

    Berry M V 1984 P. Roy. Soc. A-Math. Phy. 392 45

    [21]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141Google Scholar

    [22]

    Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278Google Scholar

    [23]

    罗慧玲, 凌晓辉, 周新星, 罗海陆 2020 物理学报 69 034202Google Scholar

    Luo H L, Ling X H, Zhou X X, Luo H L 2020 Acta Phys. Sin. 69 034202Google Scholar

    [24]

    Xu D Y, He S S, Zhou J X, Chen S Z, Luo H L 2020 Appl. Phys. Lett. 116 211103Google Scholar

    [25]

    谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘敏俊, 周新星, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014101Google Scholar

    Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu M J, Zhou X X, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014101Google Scholar

    [26]

    He S S, Zhou J X, Chen S Z, Shu W X, Luo H L, Wen S C 2020 APL Photonics 5 036105Google Scholar

    [27]

    周毅, 陈瑞, 陈雯洁, 马云贵 2020 物理学报 69 157803Google Scholar

    Zhou Y, Chen R, Chen W J, Ma Y G 2020 Acta Phys. Sin. 69 157803Google Scholar

    [28]

    Pham D L, Xu C, Prince J L 2000 Annu. Rev. Biomed. Eng. 2 315Google Scholar

    [29]

    Holyer R J, Peckinpaugh S H 1989 IEEE Trans. Geosci. Remote Sens. 27 46Google Scholar

  • 图 1  (a) 各向异性晶体的平行分束示意图; (b) λ/4波片将线偏振光转换为圆偏振光; (c) 基于各向异性晶体双折射的成像示意图

    Fig. 1.  (a) Schematic diagram of parallel beam splitting of anisotropic crystals; (b) quarter wave plate converts linearly polarized light into circularly polarized light; (c) schematic diagram of imaging based on anisotropic crystal birefringence.

    图 2  (a) 光的传递函数演示图, 光源为氦氖激光器(波长$\lambda $= 632.8 nm), 半波片(half-wave plate, HWP), 控制光强使电荷耦合装置(charge-coupled device, CCD)成像效果达到最佳, 双折射晶体分束器(birefringent crystal beamsplitters, BCB)和QWP放置在两个GLP之间, L1 (lens 1)和L2 (lens 2)组成4f系统, $ {f}_{1} $= 75 mm, $ {f}_{2} $= 175 mm; (b) 光斑分裂对比图; (c) 实测空间传递函数图

    Fig. 2.  (a) Demonstration diagram of light transfer function. The light source is a He-Ne laser (λ=632.8 nm). Half-wave plate (HWP), controlling light intensity to achieve the best imaging effect of charge-coupled device (CCD). The birefringent crystal beamsplitter (BCB) and QWP are placed between GLP1 and GLP2. L1 (lens 1) and L2 (lens 2) form a 4f system, $ {f}_{1} $= 75 mm, $ {f}_{2} $= 175 mm. (b) Spot split comparison chart; (c) The measured space transfer function graph.

    图 3  边缘检测实验示意图. 4f系统中4个镜头的焦距分别为 75, 75, 175, 125 mm. CCD和L4的距离等于$ {f}_{4} $, 待测物和L1的距离为$ {f}_{1} $. 两个4f系统完成边缘检测

    Fig. 3.  Schematic illustration of the edge detection experiment. The focal lengths of the four lenses in the 4f system are 75, 75, 175, and 125 mm. The distance between the CCD and L4 is equal to $ {f}_{4} $, and the distance between the test object and L1 is $ {f}_{1} $. Two 4f systems complete edge detection.

    图 4  (a)−(d) 输入的目标图; (e)−(h) 输出的边缘微分图

    Fig. 4.  (a)−(d) Input target graph; (e)−(h) output edge differential graph.

  • [1]

    Caulfeld H J, Dolev S 2010 Nat. Photonics 4 261Google Scholar

    [2]

    Miller D A B 2009 IEEE 97 1166Google Scholar

    [3]

    Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z, 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11137Google Scholar

    [4]

    Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar

    [5]

    Zhou J, Qian H, Zhao J, Tang M, Wu Q, Lei M, Luo H, Wen S, Chen S, Liu Z 2020 Natl. Sci. Rev.Google Scholar

    [6]

    Liu W L, Li M, Guzzon R S, Norberg E J, Parker J S, Lu M Z, Coldren L A, Yao J P 2016 Nat. Photonics 10 190Google Scholar

    [7]

    Vourkas I, Stathis D, Sirakoulis G C 2018 IEEE Trans. Emerg. Top. Comput. 6 145

    [8]

    Willner A E, Khaleghi S, Chitgarha M R, Yilmaz O F 2014 J. Light Technol. 32 660Google Scholar

    [9]

    Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J 2009 Nat. Photonics 3 216Google Scholar

    [10]

    Corcoran B, Monat C, Pelusi M, Grillet C, White T P, Faolain L O, Krauss T F, Eggleton B J, Moss D J 2010 Opt. Express 18 7770Google Scholar

    [11]

    Momeni A, Rajabalipanah H, Abdolali A, Achouri K 2019 Phys. Rev. Appl. 11 064042Google Scholar

    [12]

    Kwon H, Sounas D, Cordaro A, Polman A, Alu? A 2018 Phys. Rev. Lett. 121 173004Google Scholar

    [13]

    Shimotsuma Y, Kazansky P G, Qiu J, Hirao K 2003 Phys. Rev. Lett. 91 247405Google Scholar

    [14]

    Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901Google Scholar

    [15]

    Bliokh K Y, Bliokh Y P 2006 Phys. Rev. Lett. 96 073903Google Scholar

    [16]

    Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C, Chen S Z, Luo H L, Wen S C, Fan D Y 2015 Light-Sci. Appl. 4 e290Google Scholar

    [17]

    Ling X H, Zhou X, Huang K, Y. Liu Y, Qiu C W, Luo H, Wen S 2017 Rep. Prog. Phys. 80 066401Google Scholar

    [18]

    Mi C, Chen S, Zhou X, Tian K, Luo H, Wen S 2017 Phot. Res. 5 92Google Scholar

    [19]

    He S S, Zhou J X, Chen S Z, Shu W X, Luo H L, Wen S C 2020 Opt. Lett. 45 877Google Scholar

    [20]

    Berry M V 1984 P. Roy. Soc. A-Math. Phy. 392 45

    [21]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141Google Scholar

    [22]

    Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278Google Scholar

    [23]

    罗慧玲, 凌晓辉, 周新星, 罗海陆 2020 物理学报 69 034202Google Scholar

    Luo H L, Ling X H, Zhou X X, Luo H L 2020 Acta Phys. Sin. 69 034202Google Scholar

    [24]

    Xu D Y, He S S, Zhou J X, Chen S Z, Luo H L 2020 Appl. Phys. Lett. 116 211103Google Scholar

    [25]

    谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘敏俊, 周新星, 李瑛, 陈书青, 范滇元 2020 物理学报 69 014101Google Scholar

    Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu M J, Zhou X X, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014101Google Scholar

    [26]

    He S S, Zhou J X, Chen S Z, Shu W X, Luo H L, Wen S C 2020 APL Photonics 5 036105Google Scholar

    [27]

    周毅, 陈瑞, 陈雯洁, 马云贵 2020 物理学报 69 157803Google Scholar

    Zhou Y, Chen R, Chen W J, Ma Y G 2020 Acta Phys. Sin. 69 157803Google Scholar

    [28]

    Pham D L, Xu C, Prince J L 2000 Annu. Rev. Biomed. Eng. 2 315Google Scholar

    [29]

    Holyer R J, Peckinpaugh S H 1989 IEEE Trans. Geosci. Remote Sens. 27 46Google Scholar

  • [1] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [2] 李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩. 新型干涉高光谱成像系统的光束剪切特性分析. 物理学报, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [3] 李长胜, 陈佳. 去除光学器件弹光双折射的方法. 物理学报, 2016, 65(3): 037801. doi: 10.7498/aps.65.037801
    [4] 李长胜. 晶体的双参量调制及其应用. 物理学报, 2014, 63(7): 074207. doi: 10.7498/aps.63.074207
    [5] 娄淑琴, 王鑫, 鹿文亮. 一种新型侧漏型光子晶体光纤的研制及其传输特性研究. 物理学报, 2013, 62(8): 084216. doi: 10.7498/aps.62.084216
    [6] 张永伟, 殷春浩, 赵强, 李富强, 朱姗姗, 刘海顺. TiO2电子结构与其双折射性、各向异性关联的理论研究. 物理学报, 2012, 61(2): 027801. doi: 10.7498/aps.61.027801
    [7] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [8] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [9] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [10] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [11] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究. 物理学报, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [12] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤. 物理学报, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [13] 汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯. 高双折射的混合格子太赫兹光子晶体光纤的设计与研究. 物理学报, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [14] 张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰. 微结构纤芯对光子晶体光纤基本特性的影响. 物理学报, 2010, 59(5): 3278-3285. doi: 10.7498/aps.59.3278
    [15] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤. 物理学报, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [16] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [17] 延凤平, 李一凡, 王 琳, 龚桃荣, 刘 鹏, 刘 洋, 陶沛琳, 曲美霞, 简水生. 近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析. 物理学报, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [18] 刘小毅, 张方迪, 张 民, 叶培大. 基于谐振吸收效应的单模单偏振光子晶体光纤研究. 物理学报, 2007, 56(1): 301-307. doi: 10.7498/aps.56.301
    [19] 李曙光, 邢光龙, 周桂耀, 侯蓝田. 空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟. 物理学报, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [20] 沈为民, 金永兴, 邵中兴. 光在双轴晶体表面的反射与折射. 物理学报, 2003, 52(12): 3049-3054. doi: 10.7498/aps.52.3049
计量
  • 文章访问数:  4932
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 修回日期:  2020-10-20
  • 上网日期:  2021-02-23
  • 刊出日期:  2021-03-05

/

返回文章
返回