搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型侧漏型光子晶体光纤的研制及其传输特性研究

娄淑琴 王鑫 鹿文亮

引用本文:
Citation:

一种新型侧漏型光子晶体光纤的研制及其传输特性研究

娄淑琴, 王鑫, 鹿文亮

Design and fabrication of a novel side-leakage photonic crystal fiber and its propagation properties

Lou Shu-Qin, Wang Xin, Lu Wen-Liang
PDF
导出引用
  • 通过引入椭圆掺锗芯和侧向泄露通道, 提出并研制出一种侧漏型光子晶体光纤(photonic crystal fiber, PCF). 应用结构重构全矢量有限元数值分析法分析了设计结构和实际研制的侧漏型PCF的传输特性. 研制的侧漏型PCF, 在波长1550 nm处基模的平均模场直径为9.275 μm, 与G652标准单模光纤具有很好的适配性, 模式双折射为0.837× 10-4, 群双折射约为1.508× 10-4. 基于研制的侧漏型PCF光纤构建了Sagnac干涉仪, 对其群双折射进行了测量. 测量结果表明:当侧漏型PCF光纤达到一定长度时, 在1450–1750 nm波长范围内, 二阶模在光纤中不能成为有效传输模式, 光纤可以实现单模传输; 另外, 研制的侧漏型PCF群双折射实验的测量平均值, 与数值分析结果相符合. 侧向泄露通道的引入, 增强了侧漏型PCF光纤对外界参量变化的敏感性, 提高了其在扭转、弯曲、压力等参量的光纤传感和高性能光纤激光器构建等方面的应用潜能.
    A novel side-leakage photonic crystal fiber (SLPCF) is proposed and fabricated by introducing a central elliptical Ge-doped core and side-leakage channel. The propagation properties of the ideal and actual structure are modeled by using full-vectorial finite element method for the rebuilt structure. This SLPCF exhibits good compatibility with the standard single mode fiber (SMF) due to its modal diameter of 9.275 μm which is very close to that of SMF at a wavelength of 1550 nm. Modal birefringence of 0.837× 10-4 and the group birefringence of 1.508× 10-4 are obtained at a wavelength of 1550 nm. Based on the side-leakage PCF, a Sagnac interferometer is constituted for evaluating the properties of the actual SLPCF. Experimental results demonstrate that the second order mode can be efficiently confined and thus single mode operation can be realized in a wavelength range from 1450 nm to 1750 nm when this fiber reaches a certain length. In addition, the average measuring value of group birefringence accords with the numerical result. The proposed SLPCF has a number of potential applications in fiber sensor and fiber components with high performance since the introduction of the side-leakage channel enhances its sensitivity, the environmental parameters such as torsion, curve and strain and so on.
    • 基金项目: 国家自然科学基金(批准号:60977033, 61177082)和北京市自然科学基金(批准号:4122063)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60977033, 61177082) and the Beijing Natural Science Foundation, China (Grant No. 4122063).
    [1]

    Knight J C, Birks T A, Russell P St J, Atkin D M 1996 Opt. Lett. 21 1547

    [2]

    Demas J, Grogan M D W, Alkeskjold T, Ramachandran S 2012 Opt. Lett. 37 3768

    [3]

    Nagasaki A, Saitoh K, Koshiba M 2011 Opt. Express 19 3799

    [4]

    Silva S, Santos J L, Malcata F X, Kobelke J, Schuster K, Frazão O 2011 Opt. Lett. 36 852

    [5]

    Hossain M A, Namihira Y, Islam M A, Hirako Y 2012 Opt. Laser Technol. 44 1261

    [6]

    Chen W G, Lou S Q, Wang L W, Jian S S 2011 Opt. Commun. 284 2829

    [7]

    Lou S Q, Tang Z W, Wang L W 2011 Appl. Opt. 50 2016

    [8]

    Chen W G, Lou S Q, Wang L W, Jian S S 2010 Opt. Engin. 49 094402

    [9]

    Russell P St J 2006 J. Lightwave Technol. 24 4729

    [10]

    Ju J, Jin W 2009 J. Sens. 2009 476267

    [11]

    Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 044206 (in Chinese) (张大鹏, 胡明列, 谢辰, 柴路, 王清月 2012 物理学报 61 044206)

    [12]

    Lou S Q, Wang Z, Ren G B, Jian S S 2004 Chin. Phys. 13 1052

    [13]

    Liu S, Li S G, Yin G B, Wang X Y 2012 Chin. Phys. B 21 034217

    [14]

    Goto R, Jackson S D, Simon F, Kuhlmey B T, Eggleton B J, Himeno K 2008 Opt. Express 16 18752

    [15]

    Im J E, Kim B K, Chung Y 2010 Laser Phys. 20 1918

    [16]

    Kakarantzas G, Ortigosa-Blanch A, Birks T A, Russell P, Farr L, Couny F, Mangan B J 2003 Opt. Lett. 28 158

    [17]

    Han Y G, Chung Y, Lee S B, Kim C S, Jeong M Y, Kim M K 2009 Appl. Opt. 48 2303

    [18]

    Geernaert T, Nasilowski T, Chah K, Szpulak M, Thienpont H 2008 IEEE Photon. Technol. Lett. 20 554

    [19]

    Martynkien T, Gabriela S B, Olszewski J, Thienpont H 2010 Opt. Express 18 15113

    [20]

    Kim H M, Kim T H, Kim B K, Chung Y J 2010 IEEE Photon. Technol. Lett. 22 1539

    [21]

    Statkiewicz-Barabach G, Carvalho J P, Frazao O, Olszewski J, Mergo P, Santos J L, Urbanczyk W 2011 Appl. Opt. 50 3742

    [22]

    Carvalho J P, Anuszkiewicz A, Statkiewicz-Barabach G, Baptista J M, Frazão O, Mergo P, Santos J L, Urbanczyk W 2012 Opt. Commun. 285 264

    [23]

    Steel M J, White T P, Sterke C M, McPhedran R C, Botten L C 2001 Opt. Lett. 26 488

    [24]

    Wang W, Yang B 2012 Acta Phys. Sin. 61 064601 (in Chinese) [王伟, 杨博 2012 物理学报 61 064601]

    [25]

    Xu Q, Miao R C, Zhang Y N 2012 Acta Phys. Sin. 61 234210 (in Chinese) [许强, 苗润才, 张亚妮 2012 物理学报 61 234210]

    [26]

    Wang L W, Lou S Q, Chen W G, Li H L 2010 Chin. Phys. B 19 84209

    [27]

    Uranus H, Hoekstra H 2004 Opt. Express 12 2795

    [28]

    White T P, McPhedran R C, de Sterks C M, Botten L C, Steel M J 2001 Opt. Lett. 26 1660

    [29]

    Dong X, Tam H Y, Shum P 2007 Appl. Phys. Lett. 90 151113

  • [1]

    Knight J C, Birks T A, Russell P St J, Atkin D M 1996 Opt. Lett. 21 1547

    [2]

    Demas J, Grogan M D W, Alkeskjold T, Ramachandran S 2012 Opt. Lett. 37 3768

    [3]

    Nagasaki A, Saitoh K, Koshiba M 2011 Opt. Express 19 3799

    [4]

    Silva S, Santos J L, Malcata F X, Kobelke J, Schuster K, Frazão O 2011 Opt. Lett. 36 852

    [5]

    Hossain M A, Namihira Y, Islam M A, Hirako Y 2012 Opt. Laser Technol. 44 1261

    [6]

    Chen W G, Lou S Q, Wang L W, Jian S S 2011 Opt. Commun. 284 2829

    [7]

    Lou S Q, Tang Z W, Wang L W 2011 Appl. Opt. 50 2016

    [8]

    Chen W G, Lou S Q, Wang L W, Jian S S 2010 Opt. Engin. 49 094402

    [9]

    Russell P St J 2006 J. Lightwave Technol. 24 4729

    [10]

    Ju J, Jin W 2009 J. Sens. 2009 476267

    [11]

    Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 044206 (in Chinese) (张大鹏, 胡明列, 谢辰, 柴路, 王清月 2012 物理学报 61 044206)

    [12]

    Lou S Q, Wang Z, Ren G B, Jian S S 2004 Chin. Phys. 13 1052

    [13]

    Liu S, Li S G, Yin G B, Wang X Y 2012 Chin. Phys. B 21 034217

    [14]

    Goto R, Jackson S D, Simon F, Kuhlmey B T, Eggleton B J, Himeno K 2008 Opt. Express 16 18752

    [15]

    Im J E, Kim B K, Chung Y 2010 Laser Phys. 20 1918

    [16]

    Kakarantzas G, Ortigosa-Blanch A, Birks T A, Russell P, Farr L, Couny F, Mangan B J 2003 Opt. Lett. 28 158

    [17]

    Han Y G, Chung Y, Lee S B, Kim C S, Jeong M Y, Kim M K 2009 Appl. Opt. 48 2303

    [18]

    Geernaert T, Nasilowski T, Chah K, Szpulak M, Thienpont H 2008 IEEE Photon. Technol. Lett. 20 554

    [19]

    Martynkien T, Gabriela S B, Olszewski J, Thienpont H 2010 Opt. Express 18 15113

    [20]

    Kim H M, Kim T H, Kim B K, Chung Y J 2010 IEEE Photon. Technol. Lett. 22 1539

    [21]

    Statkiewicz-Barabach G, Carvalho J P, Frazao O, Olszewski J, Mergo P, Santos J L, Urbanczyk W 2011 Appl. Opt. 50 3742

    [22]

    Carvalho J P, Anuszkiewicz A, Statkiewicz-Barabach G, Baptista J M, Frazão O, Mergo P, Santos J L, Urbanczyk W 2012 Opt. Commun. 285 264

    [23]

    Steel M J, White T P, Sterke C M, McPhedran R C, Botten L C 2001 Opt. Lett. 26 488

    [24]

    Wang W, Yang B 2012 Acta Phys. Sin. 61 064601 (in Chinese) [王伟, 杨博 2012 物理学报 61 064601]

    [25]

    Xu Q, Miao R C, Zhang Y N 2012 Acta Phys. Sin. 61 234210 (in Chinese) [许强, 苗润才, 张亚妮 2012 物理学报 61 234210]

    [26]

    Wang L W, Lou S Q, Chen W G, Li H L 2010 Chin. Phys. B 19 84209

    [27]

    Uranus H, Hoekstra H 2004 Opt. Express 12 2795

    [28]

    White T P, McPhedran R C, de Sterks C M, Botten L C, Steel M J 2001 Opt. Lett. 26 1660

    [29]

    Dong X, Tam H Y, Shum P 2007 Appl. Phys. Lett. 90 151113

  • [1] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [2] 皮少华, 王冰洁, 赵栋, 贾波. 分布式光纤Sagnac干涉仪中基于倒谱的多分辨率入侵定位算法. 物理学报, 2016, 65(4): 044210. doi: 10.7498/aps.65.044210
    [3] 付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛. 利用Sagnac干涉仪实现光子轨道角动量分束器. 物理学报, 2015, 64(13): 130704. doi: 10.7498/aps.64.130704
    [4] 文峰, 武保剑, 李智, 李述标. 基于全光纤萨格纳克干涉仪的温度不敏感磁场测量. 物理学报, 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [5] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [6] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [7] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究. 物理学报, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [8] 汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯. 高双折射的混合格子太赫兹光子晶体光纤的设计与研究. 物理学报, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [9] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [10] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤. 物理学报, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [11] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [12] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤. 物理学报, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [13] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [14] 延凤平, 李一凡, 王 琳, 龚桃荣, 刘 鹏, 刘 洋, 陶沛琳, 曲美霞, 简水生. 近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析. 物理学报, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [15] 张晓娟, 赵建林, 侯建平. 一种新型高双折射光子晶体光纤. 物理学报, 2007, 56(8): 4668-4676. doi: 10.7498/aps.56.4668
    [16] 刘小毅, 张方迪, 张 民, 叶培大. 基于谐振吸收效应的单模单偏振光子晶体光纤研究. 物理学报, 2007, 56(1): 301-307. doi: 10.7498/aps.56.301
    [17] 李曙光, 邢光龙, 周桂耀, 侯蓝田. 空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟. 物理学报, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [18] 贾维国, 杨性愉. 强双折射光纤中任意偏振方向矢量调制不稳定性. 物理学报, 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
    [19] 沈为民, 金永兴, 邵中兴. 光在双轴晶体表面的反射与折射. 物理学报, 2003, 52(12): 3049-3054. doi: 10.7498/aps.52.3049
    [20] 舒学文, 黄德修, 邓桂华, 施 伟, 江 山. 基于单个光纤光栅的Sagnac干涉仪的理论与实验研究. 物理学报, 2000, 49(9): 1731-1735. doi: 10.7498/aps.49.1731
计量
  • 文章访问数:  3644
  • PDF下载量:  631
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-29
  • 修回日期:  2012-11-08
  • 刊出日期:  2013-04-05

一种新型侧漏型光子晶体光纤的研制及其传输特性研究

  • 1. 北京交通大学电子信息工程学院, 北京 100044
    基金项目: 国家自然科学基金(批准号:60977033, 61177082)和北京市自然科学基金(批准号:4122063)资助的课题.

摘要: 通过引入椭圆掺锗芯和侧向泄露通道, 提出并研制出一种侧漏型光子晶体光纤(photonic crystal fiber, PCF). 应用结构重构全矢量有限元数值分析法分析了设计结构和实际研制的侧漏型PCF的传输特性. 研制的侧漏型PCF, 在波长1550 nm处基模的平均模场直径为9.275 μm, 与G652标准单模光纤具有很好的适配性, 模式双折射为0.837× 10-4, 群双折射约为1.508× 10-4. 基于研制的侧漏型PCF光纤构建了Sagnac干涉仪, 对其群双折射进行了测量. 测量结果表明:当侧漏型PCF光纤达到一定长度时, 在1450–1750 nm波长范围内, 二阶模在光纤中不能成为有效传输模式, 光纤可以实现单模传输; 另外, 研制的侧漏型PCF群双折射实验的测量平均值, 与数值分析结果相符合. 侧向泄露通道的引入, 增强了侧漏型PCF光纤对外界参量变化的敏感性, 提高了其在扭转、弯曲、压力等参量的光纤传感和高性能光纤激光器构建等方面的应用潜能.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回