搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能反谐振空芯光纤导光机理与实验制作研究进展

丁伟 汪滢莹 高寿飞 洪奕峰 王璞

引用本文:
Citation:

高性能反谐振空芯光纤导光机理与实验制作研究进展

丁伟, 汪滢莹, 高寿飞, 洪奕峰, 王璞

Theoretical and experimental investigation of light guidance in hollow-core anti-resonant fiber

Ding Wei, Wang Ying-Ying, Gao Shou-Fei, Hong Yi-Feng, Wang Pu
PDF
导出引用
  • 传统实芯光纤无法克服材料本身固有的非线性、色散、瑞利散射、光照损伤等缺陷,微结构空芯光纤有望解决这些本征性问题,可以为高功率激光、非线性光学、生物光子学、量子光学、光纤传感、光通信等应用提供一个理想而方便的媒介.在技术实现的道路上存在着光子禁带空芯光纤和反谐振空芯光纤两种选项.后者具有宽带导光和高激光损伤阈值等优点,但是一直受困于较高的传输损耗.这一情况随着最近几年人们对反谐振导光机理和光纤制作技术研究的快速推进正在逐渐发生转变.本文回顾了我们团队五年来开展的系统性的理论和实验工作,介绍了一套直观的可定量计算的反谐振导光机制理论,展示了最新研制的高性能光纤.通过合理利用光纤结构中的局域性和全局性特征,突破了半解析计算反谐振空芯光纤限制损耗的难题;通过对光纤拉制条件的精密控制,制作出了紫外到中红外波段的各型光纤;并对进一步提高光纤性能和在此基础上的更丰富的光学应用研究进行了展望.
    The inherent material imperfections of solid core optical fiber, for example, Kerr nonlinearity, chromatic dispersion, Rayleigh scattering and photodarkening, set fundamental limitations for further improving the performances of fiber-based systems. Hollow-core fiber (HCF) allows the light to be guided in an air core with many unprecedented characteristics, overcoming almost all the shortcomings arising from bulk material. The exploitation of HCF could revolutionize the research fields ranging from ultra-intense pulse delivery, single-cycle pulse generation, nonlinear optics, low latency optical communication, UV light sources, mid-IR gas lasers to biochemical sensing, quantum optics and mid-IR to Terahertz waveguides. Therefore, the investigations into the guidance mechanism and the ultimate limit of HCF have become a hot research topic. In the past two decades, scientists and engineers have fabricated two types of high-performance HCFs with loss figures of 1.7 dB/km and 7.7 dB/km for hollow-core photonic bandgap fiber (HC-PBGF) and hollow-core anti-resonant fiber (HC-ARF) respectively. In comparison with the twenty-years-old HC-PBGF technology, the HC-ARF that recently appeared outperforms the former in terms of broadband transmission and high laser damage threshold together with a quickly-improved loss figure, providing an ideal platform for many more challenging applications. While the guidance mechanism and fabrication technique in HC-PBGF have been well recognized, the HC-ARF still has a lot of room for improvement. At the birth of the first generation of broadband HC-ARF, the guidance mechanism was unclear, the fiber design was far from perfect, the fabrication was immature, and the optical properties were not optimized. In the past five years, we have developed an intuitive and semi-analytical model for the confinement loss of HC-ARF and managed to fabricate high-performance nodeless HC-ARF. We further employ our theoretical model and fabrication technique to well control and design other interesting properties, such as polarization maintenance and bending loss in HC-ARF. For a long time, the anti-resonant theory of light guidance has been regarded as being qualitative, and the leaky-mode-based HC-ARF have been considered to have worse performances than the guided-mode-based HC-PBGF. Our investigations in theory and experiment negative these prejudices, thus paving the way for the booming development of HC-ARF technologies in the near future.
      Corresponding author: Ding Wei, wding@iphy.ac.cn;wangyingying@bjut.edu.cn ; Wang Ying-Ying, wding@iphy.ac.cn;wangyingying@bjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303800) and the National Natural Science Foundation of China (Grant Nos. 61575218, 61675011, 61527822, 61535009).
    [1]

    Kao K C, Hockham A 1966 Proc. IEEE 113 1151

    [2]

    Russel P St J 2003 Science 299 358

    [3]

    Born M, Wolf E 1999 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (6th Ed.) (Cambridge:Cambridge University Press) pp47-50

    [4]

    Maier S A 2007 Plasmonics:Fundamentals and Applications (New York:Springer) pp11-15

    [5]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [6]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals:Molding the Flow of Light (2nd Ed.) (Princeton:Princeton University) pp156-189

    [7]

    Birks T A, Roberts P J, Russell P St J, Atkin D M, Shepherd T J 1995 Electron. Lett. 31 1941

    [8]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [9]

    Knight J C 2003 Nature 424 847

    [10]

    Johnson S G, Ibanescu M, Skorobogatiy M, Weisberg O, Engeness T D, Soljačić M, Jacobs S A, Joannopoulos J D, Fink Y 2001 Opt. Express 9 748

    [11]

    Roberts P, Couny F, Sabert H, Mangan B, Williams D, Farr L, Mason M, Tomlinson A, Birks T, Knight J C, Russell P St J 2005 Opt. Express 13 236

    [12]

    Duguay M A, Kokubun Y, Koch T L, Pfeiffer L 1986 Appl. Phys. Lett. 49 13

    [13]

    Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J 2002 Opt. Lett. 27 1592

    [14]

    Benabid F, Roberts P J 2011 J. Mod. Opt. 58 87

    [15]

    Poletti F, Petrovich M N, Richardson D J 2013 Nanophotonics 2 315

    [16]

    Birks T A, Bird D M, Hedley T D, Pottage J M, Russell P St J 2004 Opt. Express 12 69

    [17]

    Pottage J M, Bird D M, Hedley T D, Birks T A, Knight J C, Russell P St J, Roberts P J 2003 Opt. Express 11 2854

    [18]

    Ferrarini D, Vincetti L, Zoboli M, Cucinotta A, Selleri S 2002 Opt. Express 10 1314

    [19]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, de Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322

    [20]

    Aghaie K Z, Fan S H, Digonnet M J F 2010 IEEE J. Quantum Elect. 46 920

    [21]

    Yeh P, Yariv A, Marom E 1978 J. Opt. Soc. Am. 68 1196

    [22]

    Marcatili E, Schmeltzer R 1964 Bell Syst. Tech. J. 43 1783

    [23]

    Temelkuran B, Hart S D, Benoit G, Joannopoulos J, Fink Y 2002 Nature 420 650

    [24]

    Mangan B, Farr L, Langford A, Roberts P J, Williams D P, Couny F, Lawman M, Mason M, Coupland S, Flea R, Sabert H, Birks T A, Knight J C, Russell P St J 2004 Optical Fiber Communication Conference Los Angeles, February 23-27, PD24

    [25]

    Ding W, Wang Y Y 2014 Opt. Express 22 27242

    [26]

    Ding W, Wang Y Y 2015 Front. Phys. 3 16

    [27]

    Wang Y Y, Ding W 2017 Opt. Express 25 33122

    [28]

    Gao S F, Wang Y Y, Ding W, Wang P 2018 Opt. Lett. 43 1347

    [29]

    Gao S F, Wang Y Y, Liu X L, Hong C, Gu S, Wang P 2017 Opt. Lett. 42 61

    [30]

    Gao S F, Wang Y Y, Liu X L, Ding W, Wang P 2016 Opt. Express 24 14801

    [31]

    Cao L, Gao S F, Peng Z G, Wang X C, Wang Y Y, Wang P 2018 Opt. Express 26 5609

    [32]

    Ding W, Wang Y Y 2015 Opt. Express 23 21165

    [33]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J, Allan D C 1999 Science 285 1537

    [34]

    Marcuse D 1991 Theory of Dielectric Optical Waveguides (2nd Ed.) (London:Academic Press) pp7-19

    [35]

    Michieletto M, Lyngs J K, Jakobsen C, Lgsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103

    [36]

    Uebel P, Gnendi M C, Frosz M H, Ahmed G, Edavalath N N, Mnard J-M, Russell P St J 2016 Opt. Lett. 41 1961

    [37]

    Hayes J R, Sandoghchi S R, Bradley T D, Liu Z, Slavik R, Gouveia M A, Wheeler N V, Jasion G, Chen Y, Fokoua E N, Petrovich M N, Richardson D J, Poletti F 2017 J. Lightwave Technol. 35 437

    [38]

    Chafer M, Delahaye F, Amrani F, Debord B, Grme F, Benabid F 2018 Conference on Lasers and Electro-Optics San Jose, May 13-18, paper SF1K.3

    [39]

    Liu X L, Ding W, Wang Y Y, Gao S F, Cao L, Feng X, Wang P 2017 Opt. Lett. 42 863

    [40]

    Vincetti L, Setti V 2012 Opt. Express 20 14350

    [41]

    Gao S F, Wang Y Y, Liu X L, Gu S, Peng Z G, Wang P, Du K M 2017 Chin. J. Lasers 44 0201012

    [42]

    Roberts P J, Williams D P, Sabert H, Mangan B J, Bird D M, Birks T A, Knight J C, Russell P St J 2006 Opt. Express 14 7329

    [43]

    Fini J M, Nicholson J W, Mangan B, Meng L, Windeler R S, Monberg E M, DeSantolo A, DiMarcello F V, Mukasa K 2014 Nat. Commun. 5 5085

    [44]

    Haakestad M W, Skaar J 2005 Opt. Express 13 9922

    [45]

    Vincetti L, Setti V 2010 Opt. Express 18 23133

    [46]

    Olszewski J, Szpulak M, Urbańczyk W 2005 Opt. Express 13 6015

    [47]

    Debord B, Alharbi M, Vincetti L, Husakou A, Fourcade-Dutin C, Hoenninger C, Mottay E, Grme F, Benabid F 2014 Opt. Express 22 10735

    [48]

    Elu U, Baudisch M, Pires H, Tani F, Frosz M H, Kttig F, Ermolov A, Russell P St J, Biegert J 2017 Optica 4 1024

    [49]

    Balciunas T, Fourcade-Dutin C, Fan G, Witting T, Voronin A A, Zheltikov A M, Gerome F, Paulus G G, Baltuska A, Benabid F 2015 Nat. Commun. 6 6117

    [50]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavk R, Richardson D J 2013 Nat. Photon. 7 279

    [51]

    Kttig F, Tani F, Biersach C M, Travers J C, Russell P St J 2017 Optica 4 1272

    [52]

    Hassan M R A, Yu F, Wadsworth W J, Knight J C 2016 Optica 3 218

    [53]

    Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629

    [54]

    Okaba S, Takano T, Benabid F, Bradley T, Vincetti L, Maizelis Z, Yampol'skii V, Nori F, Katori H 2014 Nat. Commun. 5 4096

    [55]

    Sprague M R, Michelberger P S, Champion T F M, England D G, Nunn J, Jin X M, Kolthammer W S, Abdolvand A, Russell P St J, Walmsley I A 2014 Nat. Photon. 8 287

    [56]

    Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L, Liu W 2016 Opt. Express 24 22454

  • [1]

    Kao K C, Hockham A 1966 Proc. IEEE 113 1151

    [2]

    Russel P St J 2003 Science 299 358

    [3]

    Born M, Wolf E 1999 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (6th Ed.) (Cambridge:Cambridge University Press) pp47-50

    [4]

    Maier S A 2007 Plasmonics:Fundamentals and Applications (New York:Springer) pp11-15

    [5]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [6]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals:Molding the Flow of Light (2nd Ed.) (Princeton:Princeton University) pp156-189

    [7]

    Birks T A, Roberts P J, Russell P St J, Atkin D M, Shepherd T J 1995 Electron. Lett. 31 1941

    [8]

    Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [9]

    Knight J C 2003 Nature 424 847

    [10]

    Johnson S G, Ibanescu M, Skorobogatiy M, Weisberg O, Engeness T D, Soljačić M, Jacobs S A, Joannopoulos J D, Fink Y 2001 Opt. Express 9 748

    [11]

    Roberts P, Couny F, Sabert H, Mangan B, Williams D, Farr L, Mason M, Tomlinson A, Birks T, Knight J C, Russell P St J 2005 Opt. Express 13 236

    [12]

    Duguay M A, Kokubun Y, Koch T L, Pfeiffer L 1986 Appl. Phys. Lett. 49 13

    [13]

    Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J 2002 Opt. Lett. 27 1592

    [14]

    Benabid F, Roberts P J 2011 J. Mod. Opt. 58 87

    [15]

    Poletti F, Petrovich M N, Richardson D J 2013 Nanophotonics 2 315

    [16]

    Birks T A, Bird D M, Hedley T D, Pottage J M, Russell P St J 2004 Opt. Express 12 69

    [17]

    Pottage J M, Bird D M, Hedley T D, Birks T A, Knight J C, Russell P St J, Roberts P J 2003 Opt. Express 11 2854

    [18]

    Ferrarini D, Vincetti L, Zoboli M, Cucinotta A, Selleri S 2002 Opt. Express 10 1314

    [19]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, de Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322

    [20]

    Aghaie K Z, Fan S H, Digonnet M J F 2010 IEEE J. Quantum Elect. 46 920

    [21]

    Yeh P, Yariv A, Marom E 1978 J. Opt. Soc. Am. 68 1196

    [22]

    Marcatili E, Schmeltzer R 1964 Bell Syst. Tech. J. 43 1783

    [23]

    Temelkuran B, Hart S D, Benoit G, Joannopoulos J, Fink Y 2002 Nature 420 650

    [24]

    Mangan B, Farr L, Langford A, Roberts P J, Williams D P, Couny F, Lawman M, Mason M, Coupland S, Flea R, Sabert H, Birks T A, Knight J C, Russell P St J 2004 Optical Fiber Communication Conference Los Angeles, February 23-27, PD24

    [25]

    Ding W, Wang Y Y 2014 Opt. Express 22 27242

    [26]

    Ding W, Wang Y Y 2015 Front. Phys. 3 16

    [27]

    Wang Y Y, Ding W 2017 Opt. Express 25 33122

    [28]

    Gao S F, Wang Y Y, Ding W, Wang P 2018 Opt. Lett. 43 1347

    [29]

    Gao S F, Wang Y Y, Liu X L, Hong C, Gu S, Wang P 2017 Opt. Lett. 42 61

    [30]

    Gao S F, Wang Y Y, Liu X L, Ding W, Wang P 2016 Opt. Express 24 14801

    [31]

    Cao L, Gao S F, Peng Z G, Wang X C, Wang Y Y, Wang P 2018 Opt. Express 26 5609

    [32]

    Ding W, Wang Y Y 2015 Opt. Express 23 21165

    [33]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J, Allan D C 1999 Science 285 1537

    [34]

    Marcuse D 1991 Theory of Dielectric Optical Waveguides (2nd Ed.) (London:Academic Press) pp7-19

    [35]

    Michieletto M, Lyngs J K, Jakobsen C, Lgsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103

    [36]

    Uebel P, Gnendi M C, Frosz M H, Ahmed G, Edavalath N N, Mnard J-M, Russell P St J 2016 Opt. Lett. 41 1961

    [37]

    Hayes J R, Sandoghchi S R, Bradley T D, Liu Z, Slavik R, Gouveia M A, Wheeler N V, Jasion G, Chen Y, Fokoua E N, Petrovich M N, Richardson D J, Poletti F 2017 J. Lightwave Technol. 35 437

    [38]

    Chafer M, Delahaye F, Amrani F, Debord B, Grme F, Benabid F 2018 Conference on Lasers and Electro-Optics San Jose, May 13-18, paper SF1K.3

    [39]

    Liu X L, Ding W, Wang Y Y, Gao S F, Cao L, Feng X, Wang P 2017 Opt. Lett. 42 863

    [40]

    Vincetti L, Setti V 2012 Opt. Express 20 14350

    [41]

    Gao S F, Wang Y Y, Liu X L, Gu S, Peng Z G, Wang P, Du K M 2017 Chin. J. Lasers 44 0201012

    [42]

    Roberts P J, Williams D P, Sabert H, Mangan B J, Bird D M, Birks T A, Knight J C, Russell P St J 2006 Opt. Express 14 7329

    [43]

    Fini J M, Nicholson J W, Mangan B, Meng L, Windeler R S, Monberg E M, DeSantolo A, DiMarcello F V, Mukasa K 2014 Nat. Commun. 5 5085

    [44]

    Haakestad M W, Skaar J 2005 Opt. Express 13 9922

    [45]

    Vincetti L, Setti V 2010 Opt. Express 18 23133

    [46]

    Olszewski J, Szpulak M, Urbańczyk W 2005 Opt. Express 13 6015

    [47]

    Debord B, Alharbi M, Vincetti L, Husakou A, Fourcade-Dutin C, Hoenninger C, Mottay E, Grme F, Benabid F 2014 Opt. Express 22 10735

    [48]

    Elu U, Baudisch M, Pires H, Tani F, Frosz M H, Kttig F, Ermolov A, Russell P St J, Biegert J 2017 Optica 4 1024

    [49]

    Balciunas T, Fourcade-Dutin C, Fan G, Witting T, Voronin A A, Zheltikov A M, Gerome F, Paulus G G, Baltuska A, Benabid F 2015 Nat. Commun. 6 6117

    [50]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavk R, Richardson D J 2013 Nat. Photon. 7 279

    [51]

    Kttig F, Tani F, Biersach C M, Travers J C, Russell P St J 2017 Optica 4 1272

    [52]

    Hassan M R A, Yu F, Wadsworth W J, Knight J C 2016 Optica 3 218

    [53]

    Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629

    [54]

    Okaba S, Takano T, Benabid F, Bradley T, Vincetti L, Maizelis Z, Yampol'skii V, Nori F, Katori H 2014 Nat. Commun. 5 4096

    [55]

    Sprague M R, Michelberger P S, Champion T F M, England D G, Nunn J, Jin X M, Kolthammer W S, Abdolvand A, Russell P St J, Walmsley I A 2014 Nat. Photon. 8 287

    [56]

    Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L, Liu W 2016 Opt. Express 24 22454

  • [1] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212194
    [2] 杨家濠, 张傲岩, 夏长明, 邓志鹏, 刘建涛, 黄卓元, 康嘉健, 曾浩然, 蒋仁杰, 莫志峰, 侯峙云, 周桂耀. 窄带空芯反谐振光纤的制备及其模式转换应用研究. 物理学报, 2022, 71(13): 134207. doi: 10.7498/aps.70.20212194
    [3] 刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延. 530 W全光纤结构连续掺铥光纤激光器. 物理学报, 2020, 69(18): 184209. doi: 10.7498/aps.69.20200466
    [4] 李长胜, 陈佳. 去除光学器件弹光双折射的方法. 物理学报, 2016, 65(3): 037801. doi: 10.7498/aps.65.037801
    [5] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [6] 娄淑琴, 王鑫, 鹿文亮. 一种新型侧漏型光子晶体光纤的研制及其传输特性研究. 物理学报, 2013, 62(8): 084216. doi: 10.7498/aps.62.084216
    [7] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [8] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [9] 程胜飞, 彭景刚, 李进延, 程兰, 蒋作文, 李海清, 戴能利, 姜发刚, 杨晓波. 空芯光子晶体光纤表面模损耗控制的研究. 物理学报, 2012, 61(24): 244207. doi: 10.7498/aps.61.244207
    [10] 王静, 张晨芳, 康泽新, 孙将, 郑斯文, 林桢, 王春灿, 简水生. 多偏振控制高双折射光纤环形镜输出特性的理论和实验研究. 物理学报, 2011, 60(12): 124215. doi: 10.7498/aps.60.124215
    [11] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤. 物理学报, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [12] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [13] 汪静丽, 姚建铨, 陈鹤鸣, 邴丕彬, 李忠洋, 钟凯. 高双折射的混合格子太赫兹光子晶体光纤的设计与研究. 物理学报, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [14] 付晓霞, 陈明阳. 用于太赫兹波传输的低损耗、高双折射光纤研究. 物理学报, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [15] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤. 物理学报, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [16] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [17] 延凤平, 李一凡, 王 琳, 龚桃荣, 刘 鹏, 刘 洋, 陶沛琳, 曲美霞, 简水生. 近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析. 物理学报, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [18] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 保偏光纤中相近频率传输区域的调制不稳定性. 物理学报, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
    [19] 李曙光, 邢光龙, 周桂耀, 侯蓝田. 空气孔正方形排列的低损耗高双折射光子晶体光纤的数值模拟. 物理学报, 2006, 55(1): 238-243. doi: 10.7498/aps.55.238
    [20] 贾维国, 杨性愉. 强双折射光纤中任意偏振方向矢量调制不稳定性. 物理学报, 2005, 54(3): 1053-1058. doi: 10.7498/aps.54.1053
计量
  • 文章访问数:  7155
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-18
  • 修回日期:  2018-04-27
  • 刊出日期:  2019-06-20

高性能反谐振空芯光纤导光机理与实验制作研究进展

    基金项目: 国家重点研发计划(批准号:2017YFA0303800)和国家自然科学基金(批准号:61575218,61675011,61527822,61535009)资助的课题.

摘要: 传统实芯光纤无法克服材料本身固有的非线性、色散、瑞利散射、光照损伤等缺陷,微结构空芯光纤有望解决这些本征性问题,可以为高功率激光、非线性光学、生物光子学、量子光学、光纤传感、光通信等应用提供一个理想而方便的媒介.在技术实现的道路上存在着光子禁带空芯光纤和反谐振空芯光纤两种选项.后者具有宽带导光和高激光损伤阈值等优点,但是一直受困于较高的传输损耗.这一情况随着最近几年人们对反谐振导光机理和光纤制作技术研究的快速推进正在逐渐发生转变.本文回顾了我们团队五年来开展的系统性的理论和实验工作,介绍了一套直观的可定量计算的反谐振导光机制理论,展示了最新研制的高性能光纤.通过合理利用光纤结构中的局域性和全局性特征,突破了半解析计算反谐振空芯光纤限制损耗的难题;通过对光纤拉制条件的精密控制,制作出了紫外到中红外波段的各型光纤;并对进一步提高光纤性能和在此基础上的更丰富的光学应用研究进行了展望.

English Abstract

参考文献 (56)

目录

    /

    返回文章
    返回