搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InAs/GaSb量子阱的能带结构及光吸收

刘柱 赵志飞 郭浩民 王玉琦

引用本文:
Citation:

InAs/GaSb量子阱的能带结构及光吸收

刘柱, 赵志飞, 郭浩民, 王玉琦

Band structure and optical absorption in InAs/GaSb quantum well

Liu Zhu, Zhao Zhi-Fei, Guo Hao-Min, Wang Yu-Qi
PDF
导出引用
  • 采用八能带K-P理论以及有限差分方法, 研究了沿[001]方向生长的InAs/GaSb二类断带量子阱体系的能带结构、 波函数分布和对[110]方向线性偏振光的吸收特性. 研究发现, 通过改变InAs或GaSb层的厚度, 可有效调节该量子阱体系的能带结构及波函数分布. 计算结果表明, 当InAs/GaSb量子阱的导带底与价带顶处于共振状态时, 导带基态与轻空穴基态杂化效应很小, 且导带基态与第一激发态的波函数存在较大的重叠, 导带基态与第一激发态之间在布里渊区中心处的跃迁概率明显大于导带底与价带顶处于非共振状态时的跃迁概率. 研究结果对基于InAs/GaSb二类断带量子阱体系的中远红外波段的新型级联激光器、探测器等光电器件的设计具有重要意义.
    An analysis of band structure, wave function distribution and absorption of linearly polarized light along the [110] direction in InAs/GaSb quantum well grown along the [001] direction is performed by the eight-band K-P model and finite difference method. Our study shows that the band structure and wave function distribution could be regulated effectively by changing the thickness of InAs or GaSb layer. When the bottom of conduction subband and the top of the valence subband are in resonance, the hybridization of ground electron and light-hole state at the zone-center is very weak, and the overlap between the wave function of the ground and the first-excited electron state is considerable, according to the theory of wave function engineering, so the transition rate between the ground and the first-excited electron state at the zone-center is larger than that when the bottom of conduction subband and the top of the valence subband are not in resonance. This is very important for designing advanced optoelectronic devices such as far-infrared or mid-infrared cascade lasers and detecters based on InAs/GaSb quantum wells.
    [1]

    Luo J, Munekata H, Fang F F, Stiles J 1990 Phys. Rev. B 41 7685

    [2]

    Yang R Q 1995 Superlatt. Microstrt. 17 77

    [3]

    Chiand H C, Tsay S F, Chau Z M, Lo I 1996 Phys. Rev. Lett. 77 2053

    [4]

    Yang M J, Yang C H, Bennett B R, Shanabrook B V 1997 Phys. Rev. Lett. 78 4613

    [5]

    Cooper L J, Patel N K, Drouot V 1998 Phys. Rev. B 57 11915

    [6]

    Zakharova A, Yen S T, Chao K A 2001 Phys. Rev. B 64 235332

    [7]

    Magri R, Wang L W, Zunger A, Vurgaftman I, Meyer J R 2000 Phys. Rev. B 61 10235

    [8]

    Cartoixá X, Ting D Z Y, McGill T C 2003 Phys. Rev. B 68 235319

    [9]

    Munekata H, Maan J C, Chang L L, Esaki L 1987 J. Vac. Sci. Technol. B 5 809

    [10]

    Altarelli M 1983 Phys. Rev. B 28 842

    [11]

    Capasso F 1987 Science 235 172

    [12]

    Asif Khan M, Yang J W, Simin G, Gaska R, Shur M S 2000 Appl. Phys. Lett. 76 1161

    [13]

    Ram-Mohan L R, Yoo K H 2006 J. Phys. Condens. Matter 18 R901

    [14]

    Helgesen P, Sizmann R, Lovold S, Paulsen A 1992 Spie. Vol. 1675 271

    [15]

    Cheng J P, Kono J, McCombe B D, Lo I, Mitchel W C, Stutz C E 1995 Phys. Rev. Lett. 74 450

    [16]

    Halvorsen E, Galperin Y, Chao K A 2000 Phys. Rev. B 61 16743

    [17]

    Lo I, Mitchel W C, Kaspi R, Elhamri S, Newrock R S 1994 Appl. Phys. Lett. 65 1024

    [18]

    Xu W, Li L L, Dong H M, Gumbs G, Folkes P A 2010 J. Appl. Phys. 108 053709

    [19]

    Bastard G 1981 Phys. Rev. B 24 5693

    [20]

    Li L L, Xu W, Peeters F M 2010 Phys. Rev. B 82 235422

    [21]

    Li L L, Xu W, Zeng Z, Wright A R, Zhang C, Zhang J, Shi Y L, Lu T C 2009 Microelectronics Journal 40 812

    [22]

    Wei X F, Xu W, Zhang J, Zeng Z, Zhang C 2008 Physics E 40 1069

    [23]

    Semenikhin I, Zakharova A, Nilsson K, Chao K A 2007 Phys. Rev. B 76 035335

    [24]

    Semenikhin I, Zakharova A, Chao K A 2008 Phys. Rev. B 77 113307

    [25]

    Lakrimi M, Khym S, Nicholas R J, Symons D M, Peeters F M, Mason N J, Walker P J 1997 Phys. Rev. Lett. 79 3034

    [26]

    Poulter A J L, Lakrimi M, Nicholas R J, Mason N J, Walker P J 1999 Phys. Rev. B 60 1884

    [27]

    Marlow T P, Cooper L J, Arnone D D, Patel N K, Whittaker D M, Linfield E H, Ritchie D A, Pepper M 1999 Phys. Rev. Lett. 82 2362

    [28]

    Zakharova A, Yen S T, Chao K A 2002 Phys. Rev. B 66 085312

    [29]

    Zakharova A, Semenikhin I, Chao K A 2011 JETP Lett. 94 660

  • [1]

    Luo J, Munekata H, Fang F F, Stiles J 1990 Phys. Rev. B 41 7685

    [2]

    Yang R Q 1995 Superlatt. Microstrt. 17 77

    [3]

    Chiand H C, Tsay S F, Chau Z M, Lo I 1996 Phys. Rev. Lett. 77 2053

    [4]

    Yang M J, Yang C H, Bennett B R, Shanabrook B V 1997 Phys. Rev. Lett. 78 4613

    [5]

    Cooper L J, Patel N K, Drouot V 1998 Phys. Rev. B 57 11915

    [6]

    Zakharova A, Yen S T, Chao K A 2001 Phys. Rev. B 64 235332

    [7]

    Magri R, Wang L W, Zunger A, Vurgaftman I, Meyer J R 2000 Phys. Rev. B 61 10235

    [8]

    Cartoixá X, Ting D Z Y, McGill T C 2003 Phys. Rev. B 68 235319

    [9]

    Munekata H, Maan J C, Chang L L, Esaki L 1987 J. Vac. Sci. Technol. B 5 809

    [10]

    Altarelli M 1983 Phys. Rev. B 28 842

    [11]

    Capasso F 1987 Science 235 172

    [12]

    Asif Khan M, Yang J W, Simin G, Gaska R, Shur M S 2000 Appl. Phys. Lett. 76 1161

    [13]

    Ram-Mohan L R, Yoo K H 2006 J. Phys. Condens. Matter 18 R901

    [14]

    Helgesen P, Sizmann R, Lovold S, Paulsen A 1992 Spie. Vol. 1675 271

    [15]

    Cheng J P, Kono J, McCombe B D, Lo I, Mitchel W C, Stutz C E 1995 Phys. Rev. Lett. 74 450

    [16]

    Halvorsen E, Galperin Y, Chao K A 2000 Phys. Rev. B 61 16743

    [17]

    Lo I, Mitchel W C, Kaspi R, Elhamri S, Newrock R S 1994 Appl. Phys. Lett. 65 1024

    [18]

    Xu W, Li L L, Dong H M, Gumbs G, Folkes P A 2010 J. Appl. Phys. 108 053709

    [19]

    Bastard G 1981 Phys. Rev. B 24 5693

    [20]

    Li L L, Xu W, Peeters F M 2010 Phys. Rev. B 82 235422

    [21]

    Li L L, Xu W, Zeng Z, Wright A R, Zhang C, Zhang J, Shi Y L, Lu T C 2009 Microelectronics Journal 40 812

    [22]

    Wei X F, Xu W, Zhang J, Zeng Z, Zhang C 2008 Physics E 40 1069

    [23]

    Semenikhin I, Zakharova A, Nilsson K, Chao K A 2007 Phys. Rev. B 76 035335

    [24]

    Semenikhin I, Zakharova A, Chao K A 2008 Phys. Rev. B 77 113307

    [25]

    Lakrimi M, Khym S, Nicholas R J, Symons D M, Peeters F M, Mason N J, Walker P J 1997 Phys. Rev. Lett. 79 3034

    [26]

    Poulter A J L, Lakrimi M, Nicholas R J, Mason N J, Walker P J 1999 Phys. Rev. B 60 1884

    [27]

    Marlow T P, Cooper L J, Arnone D D, Patel N K, Whittaker D M, Linfield E H, Ritchie D A, Pepper M 1999 Phys. Rev. Lett. 82 2362

    [28]

    Zakharova A, Yen S T, Chao K A 2002 Phys. Rev. B 66 085312

    [29]

    Zakharova A, Semenikhin I, Chao K A 2011 JETP Lett. 94 660

  • [1] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [2] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [3] 刘娜, 胡边, 魏鸿鹏, 刘红. 锯齿型石墨烯纳米窄带中量子霍尔体系的电场调控. 物理学报, 2018, 67(11): 117301. doi: 10.7498/aps.67.20180249
    [4] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型. 物理学报, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [5] 魏相飞, 何锐, 张刚, 刘向远. InAs/GaSb量子阱中太赫兹光电导特性. 物理学报, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [6] 范达志, 刘贵立, 卫琳. 扭转形变对石墨烯吸附O原子电学和光学性质影响的电子理论研究. 物理学报, 2017, 66(24): 246301. doi: 10.7498/aps.66.246301
    [7] 李立明, 宁锋, 唐黎明. 量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究. 物理学报, 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [8] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [9] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算. 物理学报, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [10] 孙伟峰, 郑晓霞. (InAs)1/(GaSb)1超晶格纳米线第一原理研究. 物理学报, 2012, 61(11): 117103. doi: 10.7498/aps.61.117103
    [11] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响. 物理学报, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [12] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [13] 马小凤, 王懿喆, 周呈悦. a-Si ∶H/SiO2多量子阱材料制备及其光学性能和微结构研究. 物理学报, 2011, 60(6): 068102. doi: 10.7498/aps.60.068102
    [14] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响. 物理学报, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [15] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [16] 邵明珠, 罗诗裕. 正弦平方势与带电粒子沟道效应的能带结构. 物理学报, 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [17] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算. 物理学报, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [18] 邬云文, 海文华. 共面两囚禁离子体系精确的量子运动. 物理学报, 2006, 55(11): 5721-5727. doi: 10.7498/aps.55.5721
    [19] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构. 物理学报, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [20] 邬云文, 海文华, 蔡丽华. Paul阱中一维两离子系统的能带结构. 物理学报, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
计量
  • 文章访问数:  5825
  • PDF下载量:  7328
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-29
  • 修回日期:  2012-05-21
  • 刊出日期:  2012-11-05

InAs/GaSb量子阱的能带结构及光吸收

  • 1. 中国科学院固体物理研究所材料应用技术研究室, 合肥 230031

摘要: 采用八能带K-P理论以及有限差分方法, 研究了沿[001]方向生长的InAs/GaSb二类断带量子阱体系的能带结构、 波函数分布和对[110]方向线性偏振光的吸收特性. 研究发现, 通过改变InAs或GaSb层的厚度, 可有效调节该量子阱体系的能带结构及波函数分布. 计算结果表明, 当InAs/GaSb量子阱的导带底与价带顶处于共振状态时, 导带基态与轻空穴基态杂化效应很小, 且导带基态与第一激发态的波函数存在较大的重叠, 导带基态与第一激发态之间在布里渊区中心处的跃迁概率明显大于导带底与价带顶处于非共振状态时的跃迁概率. 研究结果对基于InAs/GaSb二类断带量子阱体系的中远红外波段的新型级联激光器、探测器等光电器件的设计具有重要意义.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回