搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(InAs)1/(GaSb)1超晶格纳米线第一原理研究

孙伟峰 郑晓霞

引用本文:
Citation:

(InAs)1/(GaSb)1超晶格纳米线第一原理研究

孙伟峰, 郑晓霞

First-principles study of (InAs)1/(GaSb)1 superlattice nanowires

Sun Wei-Feng, Zheng Xiao-Xia
PDF
导出引用
  • 半导体纳米线作为纳米器件的作用区和连接部分具有理想的形状, 把电子运动和原子周期性限制在一维结构当中.通过体材料的已知特性, 有效地选择材料组分使纳米线的低维结构优点更加突出.此外, 还可以通过其他方式来调整纳米线特性, 如控制纳米线直径、晶体学生长方向、结构相、表面晶体学晶面和饱和 度等内部或固有的特性;施加电场、磁场、热场和力场等外部影响. 体材料InAs和GaSb的晶格常数非常相近, 因此InAs/GaSb异质结构晶格失配很小, 可生长成为优良的红外光电子材料.另外, 体材料InAs在二元IIIV化合物半导体中具有最低的有效质量, 这使得电子限制在InAs层的InAs/GaSb超晶格具有良好的输运特性. 本文通过第一原理计算研究轴线沿[001]和[111]闪锌矿晶体学方向的 (InAs)1/(GaSb)1超晶格纳米线(下标表示分子或双原子单层的数量) 的结构、电子和力学特性, 以及它们随纳米线直径(线径约为0.52.0 nm)的变化规律.另外, 分析了外部施加的应力对电子特性的影响, 考察了不同线径(InAs)1/(GaSb)1超晶格纳米线的电子带边能级随轴向应变的变化, 从而确定超晶格电子能带的带边变形势.
    As the active areas and the connection part, semiconductor nanowires have ideal shapes which are beneficial to restricting the electron motion and atomic periodicity to one one-dimensional structure. The effective selection of material components in nanowires can enhance the advantages of low-dimensional structures by analyzing the features of bulk materials. Furthermore, the nanowire properties can also be tailored by controlling the internal or intrinsic characteristics such as diameters, crystallographic growth direction, structural phase, surface crystallographic plane or saturation degree, and by applying external influences such as electric, magnetic, thermal and force fields. The bulk InAs and GaSb have approximate lattice constants, thereby resulting in small lattice mismatch for InAs/GaSb heterostructures that can finally be grown into excellent infrared optoelectronic materials. Moreover, the bulk InAs has the lowest electron effective mass in binary III-V compound semiconductors, leading to high transport features for electrons distributing most in InAs layers of InAs/GaSb superlattices. In the present work, the zinc-blend (InAs)1/(GaSb)1 superlattice nanowires (subscript denotes the number of molecular or double-atomic layers) with [001] and [111] crystallographic wire-axes have been studied by first-principles calculations for their structural, electronic and mechanical properties together with the rule of different nanowire diameters (from ~0.5 to ~2.0 nm). We also analyze the stress effects from external forces and examine the electronic band-edge changes with strain in wire-axis direction to determine the deformation potentials.
    • 基金项目: 国家自然科学基金(批准号: 50502014, 50972032)和国家高技术研究发展计划(批准号: 2009AA03Z407)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50502014, 50972032) and the National High Technology Research and Development Program of China (Grant No. 2009AA03Z407).
    [1]

    Dick K A 2008 Prog. Cryst. Growth Charact. Mater. 54 138

    [2]

    Gudiksen M S, Wang J, Lieber C M 2001 J. Phys. Chem. B 105 4062

    [3]

    Björk M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 80 1058

    [4]

    Berkdemir C, Gülseren O 2009 Phys. Rev. B 80 115334

    [5]

    Weber C, Fuhrer A, Fasth C, Lindwall G, Samuelson L, Wacker A 2010 Phys. Rev. Lett. 104 036801

    [6]

    Murphy P G, Moore J E 2007 Phys. Rev. B 76 155313

    [7]

    Ohlckers P, Pipinys P 2008 Physica E 40 2859

    [8]

    Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458

    [9]

    Qu F, Shi A, Yang M, Jiang J, Shen G, Yu R 2007 Anal. Chim. Acta 605 28

    [10]

    Cui Y, Wei Q Q, Park H K, Lieber C M 2001 Science 293 1289

    [11]

    Duan X, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241

    [12]

    Dayeh S A, Soci C, Bao X Y, Wang D 2009 Nano Today 4 347

    [13]

    Brown G J, Szmulowicz F, Haugan H, Mahalingam K, Houston S 2005 Microelectron. J. 36 256

    [14]

    Piotrowski J, Rogalski A 2004 Infrared Phys. Technol. 46 115

    [15]

    Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron. J. 32 593

    [16]

    Pistol M E, Pryor C E 2009 Phys. Rev. B 80 035316

    [17]

    Persson M P, Xu H Q 2006 Phys. Rev. B 73 125346

    [18]

    dos Santos C L, Piquini P 2010 Phys. Rev. B 81 075408

    [19]

    Singh S, Srivastava P, Mishra A 2009 Physica E 42 46

    [20]

    Thelander C, Björk M T, Larsson M W, Hansen A E, Wallenberg L R, Samuelson L 2004 Solid State Commun. 131 573

    [21]

    Duan X, Lieber C M 2000 Adv. Mater. 12 298

    [22]

    Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14

    [23]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [24]

    Hodak M, Wang S, Lu W C, Bernholc J 2007 Phys. Rev. B 76 085108

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [26]

    Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719

    [27]

    Wang L W, Zunger A 1996 Phys. Rev. B 53 9579

    [28]

    Adachi S (Translated by Ji Z G ) 2009 Properties of Group-IV, III--V and m II--VI Semiconductors (Beijing: Science Press) (in Chinese) [Adachi S (季振国译) 2009 IV族, III---V族和II---VI族半导体材料的特性 (北京: 科学出版社)]

    [29]

    Gasiorowicz S 2003 Quantum Physics (Hoboken: John Wiley and Sons) p66

    [30]

    Wang F, Yu H, Jeong S, Pietryga J M, Hollingsworth J A, Gibbons P C, Buhro W E 2008 ACS Nano 2 1903

    [31]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72

    [32]

    Yu P Y, Cardona M 2005 Fundamentals of Semiconductors (New York: Springer) p25

    [33]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305

  • [1]

    Dick K A 2008 Prog. Cryst. Growth Charact. Mater. 54 138

    [2]

    Gudiksen M S, Wang J, Lieber C M 2001 J. Phys. Chem. B 105 4062

    [3]

    Björk M T, Ohlsson B J, Sass T, Persson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 80 1058

    [4]

    Berkdemir C, Gülseren O 2009 Phys. Rev. B 80 115334

    [5]

    Weber C, Fuhrer A, Fasth C, Lindwall G, Samuelson L, Wacker A 2010 Phys. Rev. Lett. 104 036801

    [6]

    Murphy P G, Moore J E 2007 Phys. Rev. B 76 155313

    [7]

    Ohlckers P, Pipinys P 2008 Physica E 40 2859

    [8]

    Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458

    [9]

    Qu F, Shi A, Yang M, Jiang J, Shen G, Yu R 2007 Anal. Chim. Acta 605 28

    [10]

    Cui Y, Wei Q Q, Park H K, Lieber C M 2001 Science 293 1289

    [11]

    Duan X, Huang Y, Agarwal R, Lieber C M 2003 Nature 421 241

    [12]

    Dayeh S A, Soci C, Bao X Y, Wang D 2009 Nano Today 4 347

    [13]

    Brown G J, Szmulowicz F, Haugan H, Mahalingam K, Houston S 2005 Microelectron. J. 36 256

    [14]

    Piotrowski J, Rogalski A 2004 Infrared Phys. Technol. 46 115

    [15]

    Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron. J. 32 593

    [16]

    Pistol M E, Pryor C E 2009 Phys. Rev. B 80 035316

    [17]

    Persson M P, Xu H Q 2006 Phys. Rev. B 73 125346

    [18]

    dos Santos C L, Piquini P 2010 Phys. Rev. B 81 075408

    [19]

    Singh S, Srivastava P, Mishra A 2009 Physica E 42 46

    [20]

    Thelander C, Björk M T, Larsson M W, Hansen A E, Wallenberg L R, Samuelson L 2004 Solid State Commun. 131 573

    [21]

    Duan X, Lieber C M 2000 Adv. Mater. 12 298

    [22]

    Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14

    [23]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396

    [24]

    Hodak M, Wang S, Lu W C, Bernholc J 2007 Phys. Rev. B 76 085108

    [25]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [26]

    Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719

    [27]

    Wang L W, Zunger A 1996 Phys. Rev. B 53 9579

    [28]

    Adachi S (Translated by Ji Z G ) 2009 Properties of Group-IV, III--V and m II--VI Semiconductors (Beijing: Science Press) (in Chinese) [Adachi S (季振国译) 2009 IV族, III---V族和II---VI族半导体材料的特性 (北京: 科学出版社)]

    [29]

    Gasiorowicz S 2003 Quantum Physics (Hoboken: John Wiley and Sons) p66

    [30]

    Wang F, Yu H, Jeong S, Pietryga J M, Hollingsworth J A, Gibbons P C, Buhro W E 2008 ACS Nano 2 1903

    [31]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72

    [32]

    Yu P Y, Cardona M 2005 Fundamentals of Semiconductors (New York: Springer) p25

    [33]

    Leu P W, Svizhenko A, Cho K 2008 Phys. Rev. B 77 235305

  • [1] 杨帅, 张浩, 何珂. 选区外延生长的PbTe-超导杂化纳米线: 一个可能实现拓扑量子计算的新体系. 物理学报, 2023, 72(23): 238101. doi: 10.7498/aps.72.20231603
    [2] 于春霖, 张浩. Majorana准粒子与超导体-半导体异质纳米线. 物理学报, 2020, 69(7): 077303. doi: 10.7498/aps.69.20200177
    [3] 张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋. 表面钝化效应对GaAs纳米线电子结构性质影响的第一性原理研究. 物理学报, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [4] 李立明, 宁锋, 唐黎明. 量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究. 物理学报, 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [5] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [6] 刘柱, 赵志飞, 郭浩民, 王玉琦. InAs/GaSb量子阱的能带结构及光吸收. 物理学报, 2012, 61(21): 217303. doi: 10.7498/aps.61.217303
    [7] 张振铎, 侯清玉, 李聪, 赵春旺. Nd高掺杂锐钛矿相TiO2电子结构和吸收光谱的第一原理研究. 物理学报, 2012, 61(11): 117102. doi: 10.7498/aps.61.117102
    [8] 孙伟峰. (InAs)1/(GaSb)1超晶格原子链的第一原理研究. 物理学报, 2012, 61(11): 117104. doi: 10.7498/aps.61.117104
    [9] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响. 物理学报, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [10] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [11] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [12] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [13] 刘君民, 孙立忠, 陈元平, 张凯旺, 袁辉球, 钟建新. 镧铱硅电子结构与成键机理的第一性原理研究. 物理学报, 2009, 58(11): 7826-7832. doi: 10.7498/aps.58.7826
    [14] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [15] 宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜. 第一性原理研究应变Si/(111)Si1-xGex能带结构. 物理学报, 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
    [16] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究. 物理学报, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
    [17] 于 威, 张 立, 王保柱, 路万兵, 王利伟, 傅广生. 氢化纳米硅薄膜中氢的键合特征及其能带结构分析. 物理学报, 2006, 55(4): 1936-1941. doi: 10.7498/aps.55.1936
    [18] 邬云文, 海文华, 蔡丽华. Paul阱中一维两离子系统的能带结构. 物理学报, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
    [19] 徐晓光, 王春忠, 刘 伟, 孟 醒, 孙 源, 陈 岗. Mg掺杂对Li(Co,Al)O2电子结构影响的第一原理研究. 物理学报, 2005, 54(1): 313-316. doi: 10.7498/aps.54.313
    [20] 徐晓光, 魏英进, 孟醒, 王春忠, 黄祖飞, 陈岗. Mg, Al掺杂对LiCoO2体系电子结构影响的第一原理研究. 物理学报, 2004, 53(1): 210-213. doi: 10.7498/aps.53.210
计量
  • 文章访问数:  7363
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-13
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-06-05

/

返回文章
返回