-
通过广义梯度近似的第一原理全电子相对论计算, 研究了不同界面类型InAs/GaSb超晶格的界面结构、电子和光吸收特性. 由于四原子界面的复杂性和低对称性, 通过对InAs/GaSb超晶格进行电子总能量和应力最小化来确定弛豫界面的结构参数. 计算了InSb, GaAs型界面和非特殊界面(二者交替)超晶格的能带结构和光吸收谱, 考察了超晶格界面层原子发生弛豫的影响.为了证实能带结构的计算结果, 用局域密度近似和Hartree-Fock泛函的平面波方法进行了计算. 对不同界面类型InAs/GaSb超晶格的能带结构计算结果进行了比较, 发现界面Sb原子的化学键和离子性对InAs/GaSb超晶格的界面结构、 能带结构和光学特性起着至关重要的作用.
-
关键词:
- 第一原理 /
- InAs/GaSb超晶格 /
- 广义梯度近似 /
- 能带结构
The first-principles all electron relativistic calculations within the general gradient approximation are performed to investigate the interface structure, the electronic and the optical absorption properties of quaternary InAs/GaSb superlattices with InSb or GaAs type of interface. Because of the complexity and low symmetry of the quaternary interfaces, the equilibrium structural parameters of relaxed interfaces are determined by the minimization of total electronic energy and strain in InAs/GaSb superlattices. The band structures and the optical absorption spectra of InAs/GaSb superlattices with special InSb or GaAs and normal (two types are alternate) interfaces are calculated, with the consideration of the superlattice interface atomic relaxation effects. The calculation of relativistic Hartree-Fock functional and local density approximation with the plane wave method is also implemented to demonstrate the calculated band structure results. The calculated band structures of InAs/GaSb superlattices with different types of interfaces are systematically compared. We find that the chemical bonding and ionicity of interfacial Sb atoms are essentially important in determining the interface structures, the band structures and the optical properties of InAs/GaSb superlattices.-
Keywords:
- first-principles /
- InAs/GaSb superlattice /
- general gradient approximation /
- band structure
[1] Lu Y T, Sham L J 1989 Phys. Rev. B 40 5567
[2] Fujimoto H, Hamaguchi C, Nakazawa T, Tanihuchi K, Imanishi K 1990 Phys. Rev. B 41 7593
[3] Tanida Y, Ikeda M 1994 Phys. Rev. B 50 10958
[4] Park C H, Chang K J 1993 Phys. Rev. B 47 12709
[5] Arriaga J, Munoz M C, Velasco V R, Garcia-Moliner F 1991 Phys. Rev. B 43 9626
[6] Matsui Y, Kusumi Y, Nakaue A 1993 Phys. Rev. B 48 8827
[7] Szmulowicz F 1997 Phys. Rev. B 56 9972
[8] Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron. J. 32 593
[9] Wei S H, Zunger A 1996 Phys. Rev. Lett. 76 664
[10] Haugan H J, Szmulowicz F, Brown G J, Mahalingam K 2004 J. Appl. Phys. 96 2580
[11] Delley B 2000 J. Chem. Phys. 113 7756
[12] Andzelm J, King-Smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321
[13] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[14] Gu Y M, Bylander D M, Kleinman L 1994 Phys. Rev. B 50 2227
[15] Shimojo F, Zempo Y, Hoshino K, Watabe M 1995 Phys. Rev. B 52 9320
[16] Luo J W, Bester G, Zunger A 2009 Phys. Rev. Lett. 102 056405
[17] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[18] van de Walle C G 1989 Phys. Rev. B 39 1871
[19] Al-Douri Y, Abid H, Aourag H 2002 Physica B 305 186
[20] Weast R C 1988 CRC Handbook of Chemistry and Physics (68th Ed.) (Boca Raton, Florida: CRC Press)
[21] Troullier N, Martins J L 1991 Phys. Rev. B 43 1993
[22] Al-Douri Y, Abid H, Aourag H 2002 Physica B 322 179
[23] Kim Y S, Marsman M, Kresse G 2010 Phys. Rev. B 82 205212
[24] Jhabvala M, Choi K K, Monroy C, La A 2007 Infrared Phys. Technol. 50 234
[25] Heller E, Fisher K F, Szmulowicz F, Madarasz F L 1995 J. Appl. Phys. 77 5739
[26] Sherwin M E, Drummond T J 1991 J. Appl. Phys. 69 8423
[27] Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719
[28] Brothers E N, Izmaylov A F, Normand J O, Barone V, Scuseria G E 2008 J. Chem. Phys. 129 011102
[29] Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14
[30] Brown G J, Houston S, Szmulowicz F 2004 Physica E 20 471
[31] Bylander D M, Kleinman L 1996 Int. J. Mod. Phys. B 10 399
[32] Satpati B, Rodriguez J B, Trampert A, Tournie E, Joullie A, Christol P 2007 J. Cryst Growth 301 889
-
[1] Lu Y T, Sham L J 1989 Phys. Rev. B 40 5567
[2] Fujimoto H, Hamaguchi C, Nakazawa T, Tanihuchi K, Imanishi K 1990 Phys. Rev. B 41 7593
[3] Tanida Y, Ikeda M 1994 Phys. Rev. B 50 10958
[4] Park C H, Chang K J 1993 Phys. Rev. B 47 12709
[5] Arriaga J, Munoz M C, Velasco V R, Garcia-Moliner F 1991 Phys. Rev. B 43 9626
[6] Matsui Y, Kusumi Y, Nakaue A 1993 Phys. Rev. B 48 8827
[7] Szmulowicz F 1997 Phys. Rev. B 56 9972
[8] Shaw M J, Corbin E A, Kitchin M R, Jaros M 2001 Microelectron. J. 32 593
[9] Wei S H, Zunger A 1996 Phys. Rev. Lett. 76 664
[10] Haugan H J, Szmulowicz F, Brown G J, Mahalingam K 2004 J. Appl. Phys. 96 2580
[11] Delley B 2000 J. Chem. Phys. 113 7756
[12] Andzelm J, King-Smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321
[13] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[14] Gu Y M, Bylander D M, Kleinman L 1994 Phys. Rev. B 50 2227
[15] Shimojo F, Zempo Y, Hoshino K, Watabe M 1995 Phys. Rev. B 52 9320
[16] Luo J W, Bester G, Zunger A 2009 Phys. Rev. Lett. 102 056405
[17] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[18] van de Walle C G 1989 Phys. Rev. B 39 1871
[19] Al-Douri Y, Abid H, Aourag H 2002 Physica B 305 186
[20] Weast R C 1988 CRC Handbook of Chemistry and Physics (68th Ed.) (Boca Raton, Florida: CRC Press)
[21] Troullier N, Martins J L 1991 Phys. Rev. B 43 1993
[22] Al-Douri Y, Abid H, Aourag H 2002 Physica B 322 179
[23] Kim Y S, Marsman M, Kresse G 2010 Phys. Rev. B 82 205212
[24] Jhabvala M, Choi K K, Monroy C, La A 2007 Infrared Phys. Technol. 50 234
[25] Heller E, Fisher K F, Szmulowicz F, Madarasz F L 1995 J. Appl. Phys. 77 5739
[26] Sherwin M E, Drummond T J 1991 J. Appl. Phys. 69 8423
[27] Levine Z H, Allan D C 1989 Phys. Rev. Lett. 63 1719
[28] Brothers E N, Izmaylov A F, Normand J O, Barone V, Scuseria G E 2008 J. Chem. Phys. 129 011102
[29] Clarke L J, Štich I, Payne M C 1992 Comp. Phys. Comm. 72 14
[30] Brown G J, Houston S, Szmulowicz F 2004 Physica E 20 471
[31] Bylander D M, Kleinman L 1996 Int. J. Mod. Phys. B 10 399
[32] Satpati B, Rodriguez J B, Trampert A, Tournie E, Joullie A, Christol P 2007 J. Cryst Growth 301 889
计量
- 文章访问数: 8163
- PDF下载量: 955
- 被引次数: 0