搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面钝化效应对GaAs纳米线电子结构性质影响的第一性原理研究

张勇 施毅敏 包优赈 喻霞 谢忠祥 宁锋

引用本文:
Citation:

表面钝化效应对GaAs纳米线电子结构性质影响的第一性原理研究

张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋

Effect of surface passivation on the electronic properties of GaAs nanowire:A first-principle study

Zhang Yong, Shi Yi-Min, Bao You-Zhen, Yu Xia, Xie Zhong-Xiang, Ning Feng
PDF
导出引用
  • 纳米线表面存在大量的表面态,它们能够引起电子分布在纳米线表面,使得纳米线的电学性质对表面条件变得更加敏感,严重地制约器件的性能.表面钝化能够有效地移除纳米线的表面态,进而能够有效地优化器件的性能.采用基于密度泛函理论的第一性原理计算方法研究了表面钝化效应对GaAs纳米线电子结构性质的影响.考虑了不同的钝化材料,包括氢元素、氟元素、氯元素和溴元素.研究结果表明:具有小尺寸的GaAs裸纳米线的能带结构呈间接带隙特征,表面经过完全钝化后,转变为直接带隙特征;GaAs纳米线表面经过氢元素不同位置和不同比例钝化后,展示出不同的电学性质;表面钝化的物理机理是钝化原子与纳米线表面原子通过电荷补偿移除纳米线表面的电子态;与氢元素钝化相比,GaAs纳米线表面经过氟元素、氯元素和溴元素钝化后,带隙宽度较小,原因是氟元素、氯元素和溴元素在钝化过程中具有较小的电荷补偿能力,不能完全移除表面态.
    Crystal structures of GaAs nanowires prepared by employing molecular beam epitaxy technique are often dominated by the wurtzite (WZ) phase.Recently,Galicka et al.found that the WZ GaAs nanowires grown along the[0001]direction in smaller size are energetically more favorable than other nanowires with the zinc blende phase grown along a specific direction (2008 J.Phys.:Condens.Matter 20 454226).The native nanowire usually has abundant unsaturated surface dangling bonds (SDBs) inducing significant surface states,leading to electrons accumulating at the nanowire surface. Thus the electrical property of the nanowire is very sensitive to the surface condition.However,surface passivation can effectively remove the surface states from the SDBs,and optimize the device performance.In this paper,using the first-principle calculations in combination with density function theory,we investigate the effect of surface passivation on the electronic structure of the GaAs nanowires grown along the[0001]direction.Various passivation species (hydrogen (H),fluorine (F),chlorine (Cl) and bromine (Br)) with different coverage ratios are considered.The GaAs nanowires hydrogenated with different locations and coverage ratios display different electronic properties.It is found that the GaAs native nanowire with a smaller diameter shows a semiconductor characteristic with indirect band gap,which originates from the fact that at smaller diameter,the surface stress becomes more remarkable,and then leads to surface atomic reconstruction.After passivation,the indirect band gap is translated into the direct band gap.For the GaAs nanowire with an As SDB hydrogenated,one deep donor level is located in the gap,and its band structure shows an n-type characteristic.For the GaAs nanowire with a Ga SDB hydrogenated,one shallow acceptor level is located in the gap,and its band structure shows a p-type characteristic.For the GaAs nanowire with a Ga-As dimer hydrogenated, its band structure shows an intrinsic semiconductor characteristic.For the GaAs nanowire with all of the Ga SDBs hydrogenated,the band structure shows a metallic characteristic.The band gap of the GaAs nanowire gradually increases as the hydrogen passivation ratio increases.For 50% hydrogen passivation,the band gap for the symmetrical passivation is slightly bigger than that for the half-side passivation.For the F-,Cl-and Br-passivation,the band gap decreases compared with for H-passivation.This is due to the fact that the ability of passivating atoms to compensate for surface atoms is weak,thereby reducing the band gap.The mechanism for the surface passivation is the suppression of surface states by the ability of the passivating atoms to compensate for surface atoms.These results show that the electronic properties of GaAs nanowires can be modulated by surface passivation,which is helpful for using GaAs nanowires as components and interconnections of nanoscale devices.
      通信作者: 张勇, zhangyonghg@163.com;xiezxhu@163.com ; 谢忠祥, zhangyonghg@163.com;xiezxhu@163.com
    • 基金项目: 国家自然科学基金(批准号:11704112,11547197,61640405,61704036)、湖南省自然科学基金(批准号:2017JJ3051,2017JJ2062)、湖南省教育厅科研项目(批准号:17B066,17B065,16A052)、衡阳市科技计划项目(批准号:2016KJ14)、湖南工学院大学生创新训练计划项目(批准号:HX1608)和湖南省大学生研究性学习和创新性实验计划项目资助的课题.
      Corresponding author: Zhang Yong, zhangyonghg@163.com;xiezxhu@163.com ; Xie Zhong-Xiang, zhangyonghg@163.com;xiezxhu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704112, 11547197, 61640405, 61704036), the Hunan Provincial Nature Science Foundation of China (Grant Nos. 2017JJ3051, 2017JJ2062), the Program of Hunan Provincial Education Department of China (Grant Nos. 17B066, 17B065, 16A052), by the Science and Technology Planning Project of Hengyang, China (Grant No. 2016KJ14), the Student Innovation Training Program of Hunan Institute of Technology, China (Grant No. HX1608), and the Program of Student Research and Innovation Experiment of Hunan, China.
    [1]

    Li L, Pan D, Xue Y, Wang X, Lin M, Su D, Zhang Q, Yu X, So H, Wei D, Sun B, Tan P, Pan A, Zhao J 2017 Nano Lett. 17 622

    [2]

    Ji X, Yang X, Du W, Pan H, Yang T 2016 Nano Lett. 16 7580

    [3]

    Liu Y Y, Zhou W X, Chen K Q 2015 Sci. Pep. 5 17525

    [4]

    Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2015 J. Appl. Phys. 117 125707

    [5]

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese)[李立明, 宁锋, 唐黎明 2015 物理学报 64 227303]

    [6]

    Zhang W, Han W H, Zhao X S, L Q F, Ji X H, Yang T, Yang F H 2017 Chin. Phys. B 26 088101

    [7]

    Li S, Huang G Y, Guo J K, Kang N, Caroff P, Xu H Q 2017 Chin. Phys. B 26 027305

    [8]

    Yang Y K, Yang T F, Li H L, Qi Z Y, Chen X L, Wu W Q, Hu X L, He P B, Jiang Y, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Pan A L 2017 Chin. Phys. B 25 118106

    [9]

    Zhang C H, Xiang G, Lan M, Zhang X 2014 Chin. Phys. B 23 096103

    [10]

    Zhang Y, Xie Z X, Deng Y X, Yu X, Li K M 2015 Chin. Phys. B 24 126302

    [11]

    Krogstrup P, Popovitz-Biro R, Johnson E, Madsen M H, Nyg\aard J, Shtrikman H 2010 Nano Lett. 10 4475

    [12]

    Ihn S G, Song J I, Kim Y H, Lee J Y 2006 Appl. Phys. Lett. 89 053106

    [13]

    Bao X Y, Soci C, Susac D, Bratvold J, Aplin D P R, Wei W, Chen C Y, Dayeh S A, Kavanagh K L, Wang D L 2008 Nano Lett. 8 3755

    [14]

    Han N, Wang F Y, Hou J J, Xiu F, Yip S, Hui A T, Huang T, Ho J C 2012 ACS Nano 6 4428

    [15]

    Prechtel L, Padilla M, Erhard N, Karl H, Abstreiter G, Morral A F L, Holleitner A W 2012 Nano Lett. 8 2337

    [16]

    Hu S, Chi C Y, Fountaine K T, Yao M Q, Atwater H A, Dapkus P D, Lewis N S, Zhou C W 2013 Energy Environ. Sci. 6 1879

    [17]

    Soci C, Bao X Y, Aplin D P R, Wang D L A 2008 Nano Lett. 8 4275

    [18]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [19]

    Persson A I, Larsson M W, Stenstrm S, Ohlsson B J, Samuelson L, Wallenberg L R 2004 Nat. Mater. 3 677

    [20]

    Plante M C, Lapierre R R 2008 J. Cryst. Growth 310 365

    [21]

    Han N, Hou J J, Wang F Y, Yip S, Lin H, Fang M, Xiu F, Shi X L, Huang T, Ho J C 2012 Nano. Res. Lett. 7 632

    [22]

    Khanal D R, Yim J W L, Walukiewicz W, Wu J 2007 Nano Lett. 7 1186

    [23]

    Varadhan P, Fu H C, Priante D, Retamal J R D, Zhao C, Ebaid M, Ng T K, Ajia I, Mitra S, Roqan I S, Ooi B S, He J H 2017 Nano Lett. 17 1520

    [24]

    Shtrom I V, Bouravleuv A D, Samsonenko Y B, Khrebtov A I, Soshnikov I P, Reznik R R, Cirlin G E, Dhaka V, Perros A, Lipsanen H 2016 Semiconductors 50 1619

    [25]

    Zhang Y, Xie Z X, Deng Y X, Yu X 2015 Phys. Lett. A 379 2745

    [26]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 16

    [27]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]

    Shu H B, Chen X S, Ding Z L, Dong R B, Lu W 2011 J. Phys. Chem. C 115 14449

  • [1]

    Li L, Pan D, Xue Y, Wang X, Lin M, Su D, Zhang Q, Yu X, So H, Wei D, Sun B, Tan P, Pan A, Zhao J 2017 Nano Lett. 17 622

    [2]

    Ji X, Yang X, Du W, Pan H, Yang T 2016 Nano Lett. 16 7580

    [3]

    Liu Y Y, Zhou W X, Chen K Q 2015 Sci. Pep. 5 17525

    [4]

    Zhang Y, Tang L M, Ning F, Wang D, Chen K Q 2015 J. Appl. Phys. 117 125707

    [5]

    Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64 227303 (in Chinese)[李立明, 宁锋, 唐黎明 2015 物理学报 64 227303]

    [6]

    Zhang W, Han W H, Zhao X S, L Q F, Ji X H, Yang T, Yang F H 2017 Chin. Phys. B 26 088101

    [7]

    Li S, Huang G Y, Guo J K, Kang N, Caroff P, Xu H Q 2017 Chin. Phys. B 26 027305

    [8]

    Yang Y K, Yang T F, Li H L, Qi Z Y, Chen X L, Wu W Q, Hu X L, He P B, Jiang Y, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Pan A L 2017 Chin. Phys. B 25 118106

    [9]

    Zhang C H, Xiang G, Lan M, Zhang X 2014 Chin. Phys. B 23 096103

    [10]

    Zhang Y, Xie Z X, Deng Y X, Yu X, Li K M 2015 Chin. Phys. B 24 126302

    [11]

    Krogstrup P, Popovitz-Biro R, Johnson E, Madsen M H, Nyg\aard J, Shtrikman H 2010 Nano Lett. 10 4475

    [12]

    Ihn S G, Song J I, Kim Y H, Lee J Y 2006 Appl. Phys. Lett. 89 053106

    [13]

    Bao X Y, Soci C, Susac D, Bratvold J, Aplin D P R, Wei W, Chen C Y, Dayeh S A, Kavanagh K L, Wang D L 2008 Nano Lett. 8 3755

    [14]

    Han N, Wang F Y, Hou J J, Xiu F, Yip S, Hui A T, Huang T, Ho J C 2012 ACS Nano 6 4428

    [15]

    Prechtel L, Padilla M, Erhard N, Karl H, Abstreiter G, Morral A F L, Holleitner A W 2012 Nano Lett. 8 2337

    [16]

    Hu S, Chi C Y, Fountaine K T, Yao M Q, Atwater H A, Dapkus P D, Lewis N S, Zhou C W 2013 Energy Environ. Sci. 6 1879

    [17]

    Soci C, Bao X Y, Aplin D P R, Wang D L A 2008 Nano Lett. 8 4275

    [18]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [19]

    Persson A I, Larsson M W, Stenstrm S, Ohlsson B J, Samuelson L, Wallenberg L R 2004 Nat. Mater. 3 677

    [20]

    Plante M C, Lapierre R R 2008 J. Cryst. Growth 310 365

    [21]

    Han N, Hou J J, Wang F Y, Yip S, Lin H, Fang M, Xiu F, Shi X L, Huang T, Ho J C 2012 Nano. Res. Lett. 7 632

    [22]

    Khanal D R, Yim J W L, Walukiewicz W, Wu J 2007 Nano Lett. 7 1186

    [23]

    Varadhan P, Fu H C, Priante D, Retamal J R D, Zhao C, Ebaid M, Ng T K, Ajia I, Mitra S, Roqan I S, Ooi B S, He J H 2017 Nano Lett. 17 1520

    [24]

    Shtrom I V, Bouravleuv A D, Samsonenko Y B, Khrebtov A I, Soshnikov I P, Reznik R R, Cirlin G E, Dhaka V, Perros A, Lipsanen H 2016 Semiconductors 50 1619

    [25]

    Zhang Y, Xie Z X, Deng Y X, Yu X 2015 Phys. Lett. A 379 2745

    [26]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 16

    [27]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045

    [28]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]

    Shu H B, Chen X S, Ding Z L, Dong R B, Lu W 2011 J. Phys. Chem. C 115 14449

  • [1] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 物理学报, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [2] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [3] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏. GaAs纳米线晶体结构及光学特性. 物理学报, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [4] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型. 物理学报, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [5] 苑汇帛, 李林, 曾丽娜, 张晶, 李再金, 曲轶, 杨小天, 迟耀丹, 马晓辉, 刘国军. 金辅助催化方法制备GaAs和GaAs/InGaAs纳米线结构的形貌表征及生长机理研究. 物理学报, 2018, 67(18): 188101. doi: 10.7498/aps.67.20180220
    [6] 刘雪璐, 吴江滨, 罗向东, 谭平恒. 半绝缘GaAs的双调制反射光谱研究. 物理学报, 2017, 66(14): 147801. doi: 10.7498/aps.66.147801
    [7] 檀满林, 周丹丹, 符冬菊, 张维丽, 马清, 李冬霜, 陈建军, 张化宇, 王根平. 基于BiFeO3/ITO复合膜表面钝化的黑硅太阳电池性能研究. 物理学报, 2017, 66(16): 167701. doi: 10.7498/aps.66.167701
    [8] 李立明, 宁锋, 唐黎明. 量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究. 物理学报, 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [9] 崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏. GaAs纳米线及GaAs/InxGa1-xAs/GaAs纳米线径向异质结构的无催化选区生长的实验研究. 物理学报, 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [10] 张晓青, 贺号, 胡明列, 颜鑫, 张霞, 任晓敏, 王清月. 多波长飞秒激光激发下GaAs纳米线SHG特性研究. 物理学报, 2013, 62(7): 076102. doi: 10.7498/aps.62.076102
    [11] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [12] 孙伟峰, 郑晓霞. (InAs)1/(GaSb)1超晶格纳米线第一原理研究. 物理学报, 2012, 61(11): 117103. doi: 10.7498/aps.61.117103
    [13] 何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩. 热原子层沉积氧化铝对硅的钝化性能及热稳定性. 物理学报, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [14] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [15] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [16] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算. 物理学报, 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [17] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构. 物理学报, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [18] 于 威, 张 立, 王保柱, 路万兵, 王利伟, 傅广生. 氢化纳米硅薄膜中氢的键合特征及其能带结构分析. 物理学报, 2006, 55(4): 1936-1941. doi: 10.7498/aps.55.1936
    [19] 章永凡, 丁开宁, 林 伟, 李俊篯. VC(001)弛豫表面构型与电子结构第一性原理研究. 物理学报, 2005, 54(3): 1352-1360. doi: 10.7498/aps.54.1352
    [20] 梁君武, 胡慧芳, 韦建卫, 彭 平. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响. 物理学报, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
计量
  • 文章访问数:  7020
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-14
  • 修回日期:  2017-07-04
  • 刊出日期:  2017-10-05

/

返回文章
返回