搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金辅助催化方法制备GaAs和GaAs/InGaAs纳米线结构的形貌表征及生长机理研究

苑汇帛 李林 曾丽娜 张晶 李再金 曲轶 杨小天 迟耀丹 马晓辉 刘国军

引用本文:
Citation:

金辅助催化方法制备GaAs和GaAs/InGaAs纳米线结构的形貌表征及生长机理研究

苑汇帛, 李林, 曾丽娜, 张晶, 李再金, 曲轶, 杨小天, 迟耀丹, 马晓辉, 刘国军

Morphology characterization and growth mechanism of Au-catalyzed GaAs and GaAs/InGaAs nanowires

Yuan Hui-Bo, Li Lin, Zeng Li-Na, Zhang Jing, Li Zai-Jin, Qu Yi, Yang Xiao-Tian, Chi Yao-Dan, Ma Xiao-Hui, Liu Guo-Jun
PDF
导出引用
  • 利用金(Au)辅助催化的方法,通过金属有机化学气相沉积技术制备了GaAs纳米线及GaAs/InGaAs纳米线异质结构.通过对扫描电子显微镜(SEM)测试结果分析,发现温度会改变纳米线的生长机理,进而影响形貌特征.在GaAs纳米线的基础上制备了高质量的纳米线轴、径向异质结构,并对生长机理进行分析.SEM测试显示,GaAs/InGaAs异质结构呈现明显的柱状形貌与衬底垂直,InGaAs与GaAs段之间的界面清晰可见.通过X射线能谱对异质结样品进行了线分析,结果表明在GaAs/InGaAs轴向纳米线异质结构样品中,未发现明显的径向生长.从生长机理出发分析了在GaAs/InGaAs径向纳米线结构制备过程中伴随有少许轴向生长的现象.
    The nanowires (NWs) of heterostructure with GaAs based materials have received great attention in the past decades, due to their potential applications in electronics and optoelectronics. Therefore it becomes more and more important to investigate the technology of fabricating NWs with GaAs based materials. In our study, Au-catalyzed GaAs nanowires and GaAs/InGaAs heterostructures are grown by metal-organic chemical vapor deposition following the vapor-liquid-solid mechanism. The growth process, which is vital for morphology research, is found to be strongly affected by growth temperature via scanning electron microscope testing. The GaAs NWs are grown at varying temperatures to investigate the influence of temperature on NW morphology. It is observed that the axial growth decreases with growth temperature increasing while radial growth exhibits the opposite trend, which causes the length of NWs to decrease with temperature increasing at the same time. As radial growth rate is inhibited and radial growth rate is enhanced at relatively high temperature, the geometry of GaAs nanowires turns from columnar to taper and eventually pyramid with temperature rising. The GaAs/InGaAs nanowire heterostructures with distinct heterostructure interfaces, which are columnar and vertical to substrates, are obtained and analyzed. Energy dispersive X-ray spectroscopy (EDX) is used for element monitoring while radial growth is hardly observed during axial heterostructure fabrication, indicating well controlled fabrication technology of NWs growth. The InGaAs segments of axial heterostructures are grown after GaAs segments and occur at the bottom of NWs instead on the top, the analysis of which shows that In atoms would take part in the growth of NWs via migrating at the surface of substrate preferentially, rather than being absorbed in Au-Ga alloy catalytic droplets. Radial heterostructures of GaAs/InGaAs nanowires are grown with GaAs as cores and InGaAs as shells, respectively. Because the axial growth rate would be restricted with temperature increasing, the growth temperature of radial heterostructures is higher than that of axial heterostructures. A small amount of axial growth occurs during the growth of radial heterostructures as indicated by the EDX monitoring result, which is analyzed to be caused by the diffusion of In atoms at radial growth temperature, resulting in a segment of InGaAs nanowire at the interface of nanowires and Au-Ga alloy catalytic droplets.
      通信作者: 李林, licust@126.com;zhangjingcust@hotmail.com ; 张晶, licust@126.com;zhangjingcust@hotmail.com
    • 基金项目: 海南省自然科学基金(批准号:2018CXTD336,618MS055,618QN241)、国家自然科学基金(批准号:61864002)和长春理工大学创新基金(批准号:000586,000943)资助的课题.
      Corresponding author: Li Lin, licust@126.com;zhangjingcust@hotmail.com ; Zhang Jing, licust@126.com;zhangjingcust@hotmail.com
    • Funds: Project supported by the Natural Science Foundation of Hainan Province, China (Grant Nos. 2018CXTD336, 618MS055, 618QN241), the National Natural Science Foundation of China (Grant No. 61864002), and the Foundation of Changchun University of Science and Technology, China (Grant Nos. 000586, 000943).
    [1]

    Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103 (in Chinese) [崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 物理学报 63 136103]

    [2]

    Shen L F, Yip S, Yang Z X, Fang M, Hung T F, Pun E Y B, Ho J C 2015 Sci. Rep. 5 16871

    [3]

    Tomioka K, Fukui T 2014 Appl. Phys. Lett. 104 073507

    [4]

    Sadaf S M, Ra Y H, Trung N H P, Djavid M, Mi Z T 2015 Nano Lett. 15 6696

    [5]

    Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L, Pan A L 2016 Nano-Micro Lett. 8 29

    [6]

    Tchernycheva M, Messanvi A, Bugallo A D L, Jacopin G, Lavenus P, Rigutti L, Zhang H, Halioua Y, Julien F H, Eymery J, Durand C 2014 Nano Lett. 14 3515

    [7]

    Gustiono D, Wibowo E, Othaman Z 2013 J. Phys.: Conf. Ser. 423 012047

    [8]

    Zhao C J, Sun S J 2014 Mater. Rev. B 28 34 (in Chinese) [赵翠俭, 孙素静 2014 材料导报 28 34]

    [9]

    Chuang L C, Moewe M, Chase C, Kobayashi N P, Chang H C 2007 Appl. Phys. Lett. 90 043115

    [10]

    Ye X, Huang H, Ren X M, Guo J W, Huang Y Q, Wang Q, Zhang X 2011 Acta Phys. Sin. 60 036103 (in Chinese) [叶显, 黄辉, 任晓敏, 郭经纬, 黄永清, 王琦, 张霞 2011 物理学报 60 036103]

    [11]

    Othaman Z, Wibowo E, Sakrani S 2013 Adv. Mater. Res. 667 224

    [12]

    Wang N, Cai Y, Zhang R Q 2008 Mat. Sci. Eng. R 60 1

    [13]

    Borgstrm M, Deppert K, Samuelson L, Seifert W 2004 J. Cryst. Growth. 260 18

    [14]

    Yuan H B, Li L, Li Z J, Wang Y, Qu Y, Ma X H, Liu G J 2018 Chem. Phys. Lett. 692 28

    [15]

    Zhang Y Y, Sanchez A M, Sun Y, Wu J, Aagesen M, Huo S G, Kim D Y, Jurczak P, Xu X L, Liu H Y 2016 Nano Lett. 16 1237

    [16]

    Soci C, Bao X Y, Aplin D P R, Wang D L 2008 Nano Lett. 8 4275

    [17]

    Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K, Koguchi M, Kakibayashi H 1995 J. Appl. Phys. 77 447

    [18]

    Dubrovskii V G, Sibirev N V, Cirlin G E, Tchernycheva M, Harmand J C, Ustinov V M 2008 Phys. Rev. E 77 031606

    [19]

    L X L, Zhang X, Liu X L, Yan X, Cui J G, Li J S, Huang Y Q, Ren X M 2013 Chin. Phys. B 22 066101

    [20]

    Ameruddin A S, Fonseka H A, Caroff P, Wong L J, Veld R L O H, Boland J L, Johnston M B, Tan H H, Jagadish C 2015 Nanotechnology 26 205604

    [21]

    Li A, Zou J, Han X D 2016 Sci. China: Mater. 59 51

  • [1]

    Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103 (in Chinese) [崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 物理学报 63 136103]

    [2]

    Shen L F, Yip S, Yang Z X, Fang M, Hung T F, Pun E Y B, Ho J C 2015 Sci. Rep. 5 16871

    [3]

    Tomioka K, Fukui T 2014 Appl. Phys. Lett. 104 073507

    [4]

    Sadaf S M, Ra Y H, Trung N H P, Djavid M, Mi Z T 2015 Nano Lett. 15 6696

    [5]

    Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L, Pan A L 2016 Nano-Micro Lett. 8 29

    [6]

    Tchernycheva M, Messanvi A, Bugallo A D L, Jacopin G, Lavenus P, Rigutti L, Zhang H, Halioua Y, Julien F H, Eymery J, Durand C 2014 Nano Lett. 14 3515

    [7]

    Gustiono D, Wibowo E, Othaman Z 2013 J. Phys.: Conf. Ser. 423 012047

    [8]

    Zhao C J, Sun S J 2014 Mater. Rev. B 28 34 (in Chinese) [赵翠俭, 孙素静 2014 材料导报 28 34]

    [9]

    Chuang L C, Moewe M, Chase C, Kobayashi N P, Chang H C 2007 Appl. Phys. Lett. 90 043115

    [10]

    Ye X, Huang H, Ren X M, Guo J W, Huang Y Q, Wang Q, Zhang X 2011 Acta Phys. Sin. 60 036103 (in Chinese) [叶显, 黄辉, 任晓敏, 郭经纬, 黄永清, 王琦, 张霞 2011 物理学报 60 036103]

    [11]

    Othaman Z, Wibowo E, Sakrani S 2013 Adv. Mater. Res. 667 224

    [12]

    Wang N, Cai Y, Zhang R Q 2008 Mat. Sci. Eng. R 60 1

    [13]

    Borgstrm M, Deppert K, Samuelson L, Seifert W 2004 J. Cryst. Growth. 260 18

    [14]

    Yuan H B, Li L, Li Z J, Wang Y, Qu Y, Ma X H, Liu G J 2018 Chem. Phys. Lett. 692 28

    [15]

    Zhang Y Y, Sanchez A M, Sun Y, Wu J, Aagesen M, Huo S G, Kim D Y, Jurczak P, Xu X L, Liu H Y 2016 Nano Lett. 16 1237

    [16]

    Soci C, Bao X Y, Aplin D P R, Wang D L 2008 Nano Lett. 8 4275

    [17]

    Hiruma K, Yazawa M, Katsuyama T, Ogawa K, Haraguchi K, Koguchi M, Kakibayashi H 1995 J. Appl. Phys. 77 447

    [18]

    Dubrovskii V G, Sibirev N V, Cirlin G E, Tchernycheva M, Harmand J C, Ustinov V M 2008 Phys. Rev. E 77 031606

    [19]

    L X L, Zhang X, Liu X L, Yan X, Cui J G, Li J S, Huang Y Q, Ren X M 2013 Chin. Phys. B 22 066101

    [20]

    Ameruddin A S, Fonseka H A, Caroff P, Wong L J, Veld R L O H, Boland J L, Johnston M B, Tan H H, Jagadish C 2015 Nanotechnology 26 205604

    [21]

    Li A, Zou J, Han X D 2016 Sci. China: Mater. 59 51

  • [1] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [2] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏. GaAs纳米线晶体结构及光学特性. 物理学报, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [3] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [4] 张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋. 表面钝化效应对GaAs纳米线电子结构性质影响的第一性原理研究. 物理学报, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [5] 杨秀清, 胡亦, 张景路, 王艳秋, 裴春梅, 刘飞. AuPd纳米粒子作为催化剂制备硼纳米线及其场发射性质. 物理学报, 2014, 63(4): 048102. doi: 10.7498/aps.63.048102
    [6] 崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏. GaAs纳米线及GaAs/InxGa1-xAs/GaAs纳米线径向异质结构的无催化选区生长的实验研究. 物理学报, 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [7] 吴亮亮, 赵德刚, 李亮, 乐伶聪, 陈平, 刘宗顺, 江德生. 金属有机化学气相沉积法生长条件对AlN薄膜面内晶粒尺寸的影响. 物理学报, 2013, 62(8): 086102. doi: 10.7498/aps.62.086102
    [8] 张晓青, 贺号, 胡明列, 颜鑫, 张霞, 任晓敏, 王清月. 多波长飞秒激光激发下GaAs纳米线SHG特性研究. 物理学报, 2013, 62(7): 076102. doi: 10.7498/aps.62.076102
    [9] 叶显, 黄辉, 任晓敏, 郭经纬, 黄永清, 王琦, 张霞. InAs/GaAs和InAs/InxGa1-xAs/GaAs纳米线异质结构的生长研究. 物理学报, 2011, 60(3): 036103. doi: 10.7498/aps.60.036103
    [10] 邢海英, 范广涵, 杨学林, 张国义. 金属有机化学气相淀积技术制备GaMnN薄膜材料光学性质研究. 物理学报, 2010, 59(1): 504-507. doi: 10.7498/aps.59.504
    [11] 杨帆, 马瑾, 孔令沂, 栾彩娜, 朱振. 金属有机物化学气相沉积法生长Ga2(1-x)In2xO3薄膜的结构及光电性能研究. 物理学报, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [12] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [13] 叶 凡, 蔡兴民, 王晓明, 赵建果, 谢二庆. InN纳米线的低压化学气相沉积及其场发射特性研究. 物理学报, 2007, 56(4): 2342-2346. doi: 10.7498/aps.56.2342
    [14] 刘仕锋, 秦国刚, 尤力平, 张纪才, 傅竹西, 戴 伦. 在双热舟化学气相沉积系统中通过掺In技术生长GaN纳米线和纳米锥. 物理学报, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [15] 马 宏, 朱光喜, 陈四海, 易新建. 金属有机化学气相外延生长1310nm偏振无关混合应变量子阱半导体光放大器研究. 物理学报, 2004, 53(12): 4257-4261. doi: 10.7498/aps.53.4257
    [16] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [17] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [18] 胡颖. 微波等离子体化学气相沉积方法在Si衬底上生长SiC纳米线. 物理学报, 2001, 50(12): 2452-2455. doi: 10.7498/aps.50.2452
    [19] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
    [20] 孙力, 陈延峰, 于涛, 闵乃本, 姜晓明, 修立松. 金属有机化学气相沉积法制备钛酸铅铁电薄膜. 物理学报, 1996, 45(10): 1729-1736. doi: 10.7498/aps.45.1729
计量
  • 文章访问数:  6729
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-29
  • 修回日期:  2018-06-05
  • 刊出日期:  2019-09-20

/

返回文章
返回