搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米片大自旋特性第一性原理研究

张淑亭 孙志 赵磊

引用本文:
Citation:

石墨烯纳米片大自旋特性第一性原理研究

张淑亭, 孙志, 赵磊

First-principles study of graphene nanoflakes with large spin property

Zhang Shu-Ting, Sun Zhi, Zhao Lei
PDF
导出引用
  • 通过基于密度泛函理论的全电子数值轨道第一性原理电子结构计算,研究了各种形状有限石墨烯片段(石墨烯纳米片,GNF)的磁特性,证明GNF的自旋磁有序来源于由其形状决定的键拓扑挫折(topological frustration)作用.锯齿形边缘的三角形GNF的净自旋不为零,如同一个人造铁磁性原子团,总自旋随尺度线性增加.根据拓扑挫折原理,可以在GNF中引入较大的净自旋和独特的自旋分布,如由三角形GNF单元构成的复杂分形结构,总自旋随分形级数呈指数上升.通过刻蚀技术制作具有一定拓扑结构的GNF可以实现可控自旋电子纳米材料和器件应用.
    Based on density functional theory, the extraordinary magnetic properties of finite graphene fragments (graphene nanoflake, GNF) with different shapes are studied by first-principles electronic structure calculations with all electron numerical-orbital basis set scheme as implemented in DMol3 code of Materials Studio 8.0 software package. According to the graph theory, the spin characteristics of several typical hydrogen-terminated GNF shaped into 3-fold and 6-fold highly rotational symmetries as well as two specific geometrical structures related to graphene nanoribbon are analyzed and verified by first-principles calculations. In some characteristic GNFs shaped into a singular graph, the electron energy matrix becomes singular and multiple states of zero eigenvalue appear which is called nonbonding state (NBS). In these singular graph structures, all the -bonds cannot be satisfied simultaneously and spin-aligned singly occupied molecular orbitals are generated from degeneracy at Fermi-level, which means that the topological frustration occurs. It is proved that the electronic spin magnetic order of GNF originates from topological frustration of conjugate -bonds determined by its shape. The net spin of triangular GNF with zigzag edges is not zero, like an artificial ferromagnetic atom, increasing proportionally with its linear dimension. According to the principle of topological frustration, the large net spins and specific spin distributions can be reasonably introduced into graphene nanocrystals, such as by triangulation. The NBSs of zigzag-edged triangular GNFs with nanoscale dimension create 0.4-0.7 eV energy gaps at Fermi-level to achieve stable spin-alignment at ambient temperature. Even though the linear size of zigzag-edged triangular GNF increases beyond nanoscale, the maximum energy gap is still ~0.68 eV and thus the magnetic moment measurement is feasible at room ambient temperature. The total spin of the complex fractal structure constructed by zigzag-edged triangular GNF unit increases exponentially with the fractal level, due to the increased possibility of topological frustration from aggrandizing boundary. In addition, a large net spin can also be acquired by hollowed-out zigzag triangle in graphene with a net spin value of at least 1.00 and a spin-polarization split band gap of ~0.40 eV. The basic design principle for obtaining large spin and controlling spin state distribution by etching GNF of various patterns in graphene atomic layer is presented. In contrast to traditional chemical synthesis of obtaining large spin limited by complicated reaction pathways, the GNF with large spin easily exceeding the reported highest spin in conjugated polymers can be practically produced by carving lithography. It is suggested that the GNF with designed topological structures fabricated by pattern carving technique can be efficiently used to realize the controllable spintronic nanomaterials and devices.
      通信作者: 孙志, sunzhihust@sohu.com
    • 基金项目: 黑龙江省自然科学基金(批准号:QC2015C063)和中国博士后科学基金(批准号:2013M531058)资助的课题.
      Corresponding author: Sun Zhi, sunzhihust@sohu.com
    • Funds: Projects supported by the Heilongjiang Natural Science Foundation of Heilongjiang Province, China (Grant No. QC2015C063) and the China Postdoctoral Science Foundation (Grant No. 2013M531058).
    [1]

    Jabar A, Masrour R 2017 Superlattice. Microst. 112 541

    [2]

    Masrour R, Jabar A 2018 Physica A 497 211

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [4]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [5]

    Berger C, Song Z, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [6]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [7]

    Jellal A 2016 Phys. Lett. A 380 1514

    [8]

    Lai W C, Wang Z M, Li Y L, Wang X, Liu Y, Liu X Y 2018 J. Phys. Chem. C 122 8473

    [9]

    Ding Y, Wang Y 2017 J. Mater. Chem. C 5 10728

    [10]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [11]

    Chuang C, Roy P, Ravindranath R, Periasamy A P, Chang H T, Liang C T 2016 Mater. Lett. 170 110

    [12]

    Xie H, Lu W C, Zhang W, Qin P H, Wang C Z, Ho K M 2013 Chem. Phys. Lett. 572 48

    [13]

    Fajtlowicz S, John P E, Sachs H 2005 Croat. Chem. Acta 78 195

    [14]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano Lett. 7 2295

    [15]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [16]

    Khler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23

    [17]

    Andzelm J, King-Smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406

    [19]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205

    [20]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [21]

    Edwards D M, Katsnelson M I 2006 J. Phys. B 18 7209

    [22]

    Zha X H, Ren J C, Feng L, Bai X J, Luo K, Zhang Y Q, He J, Huang Q, Franciscod J S, Du S Y 2018 Nanoscale 10 8763

    [23]

    Trauzettel B, Bulaev D V, Loss D, Burkard G 2007 Nat. Phys. 3 192

    [24]

    Fairbrother A, Ramon J, Valencia S, Lauber B, Shorubalko I, Ruffieux P, Hintermann T, Fasel R 2017 Nanoscale 9 2785

    [25]

    Jiang D E, Sumpter B G, Dai S 2007 J. Chem. Phys. 126 124701

    [26]

    Li F, Li T, Chen F, Zhang F P 2015 Sci. Rep. 5 9355

    [27]

    Ezawa M 2008 Physica E 40 1421

    [28]

    Fernndez-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [29]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

  • [1]

    Jabar A, Masrour R 2017 Superlattice. Microst. 112 541

    [2]

    Masrour R, Jabar A 2018 Physica A 497 211

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [4]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [5]

    Berger C, Song Z, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [6]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [7]

    Jellal A 2016 Phys. Lett. A 380 1514

    [8]

    Lai W C, Wang Z M, Li Y L, Wang X, Liu Y, Liu X Y 2018 J. Phys. Chem. C 122 8473

    [9]

    Ding Y, Wang Y 2017 J. Mater. Chem. C 5 10728

    [10]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [11]

    Chuang C, Roy P, Ravindranath R, Periasamy A P, Chang H T, Liang C T 2016 Mater. Lett. 170 110

    [12]

    Xie H, Lu W C, Zhang W, Qin P H, Wang C Z, Ho K M 2013 Chem. Phys. Lett. 572 48

    [13]

    Fajtlowicz S, John P E, Sachs H 2005 Croat. Chem. Acta 78 195

    [14]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano Lett. 7 2295

    [15]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [16]

    Khler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23

    [17]

    Andzelm J, King-Smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406

    [19]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205

    [20]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [21]

    Edwards D M, Katsnelson M I 2006 J. Phys. B 18 7209

    [22]

    Zha X H, Ren J C, Feng L, Bai X J, Luo K, Zhang Y Q, He J, Huang Q, Franciscod J S, Du S Y 2018 Nanoscale 10 8763

    [23]

    Trauzettel B, Bulaev D V, Loss D, Burkard G 2007 Nat. Phys. 3 192

    [24]

    Fairbrother A, Ramon J, Valencia S, Lauber B, Shorubalko I, Ruffieux P, Hintermann T, Fasel R 2017 Nanoscale 9 2785

    [25]

    Jiang D E, Sumpter B G, Dai S 2007 J. Chem. Phys. 126 124701

    [26]

    Li F, Li T, Chen F, Zhang F P 2015 Sci. Rep. 5 9355

    [27]

    Ezawa M 2008 Physica E 40 1421

    [28]

    Fernndez-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [29]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

  • [1] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [2] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [5] 李鑫, 黄忠梅, 刘世荣, 彭鸿雁, 黄伟其. 掺氧纳米硅局域态中的电子自旋能级展宽效应. 物理学报, 2020, 69(17): 174206. doi: 10.7498/aps.69.20200336
    [6] 陈献, 程梅娟, 吴顺情, 朱梓忠. 石墨炔衍生物结构稳定性和电子结构的第一性原理研究. 物理学报, 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [7] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [8] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究. 物理学报, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [9] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [10] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [11] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [12] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [13] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算. 物理学报, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [14] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [15] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [16] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [18] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [19] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
计量
  • 文章访问数:  7481
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-02
  • 修回日期:  2018-06-04
  • 刊出日期:  2019-09-20

/

返回文章
返回