搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨炔衍生物结构稳定性和电子结构的第一性原理研究

陈献 程梅娟 吴顺情 朱梓忠

引用本文:
Citation:

石墨炔衍生物结构稳定性和电子结构的第一性原理研究

陈献, 程梅娟, 吴顺情, 朱梓忠

First-principle study of structure stability and electronic structures of graphyne derivatives

Chen Xian, Cheng Mei-Juan, Wu Shun-Qing, Zhu Zi-Zhong
PDF
导出引用
  • 通过基于密度泛函理论的第一原理计算,系统研究了石墨炔衍生物的结构稳定性、原子构型和电子性质.石墨炔衍生物的结构是由碳六元环以及连接六元环间的碳链组成,碳链上的碳原子数为N=16.研究结果表明,碳链上碳原子数的奇偶性对石墨炔衍生物的结构稳定和相应的原子构型、电子结构性质具有很大的影响.其奇偶性规律为: 当六元环间的碳原子数为奇数时,体系中的碳链均为双键排布,系统呈现金属性;当六元环间的碳原子数为偶数时,系统中的碳链形式为单、三键交替排列,体系为直接带隙的半导体.直接带隙的存在能够促进光电能的高效转换,预示着石墨炔在光电子器件中的应用优势.N= 2,4,6的带隙分布在0.940.84 eV之间,带隙的大小与碳链上三键的数量和长度有关.研究表明,将碳原子链引入到石墨烯碳六元环之间,通过控制引入的碳原子个数可以调控其金属和半导体电子特性,为设计和制备基于碳原子的可调控s-p杂化的二维材料和纳米电子器件提供了理论依据.
    A new carbon allotropegraphyne has attracted a lot of attention in the field of material sciences and condensed-matter physics due to its unique structure and excellent electronic, optical and mechanical properties. First-principles calculations based on the density functional theory (DFT) are performed to investigate the structures, energetic stabilities and electronic structures of -graphyne derivatives ( -N). The studied -graphyne derivative consists of hexagon carbon rings connected by onedimensional carbon chains with various numbers of carbon atoms (N=1-6) on the chain. The calculation results show that the parity of number of carbon atoms on the carbon chains has a great influence on the structural configuration, the structural stability and the electronic property of the system. The -graphyne derivatives with odd-numbered carbon chains possess continuous CC double bonds, energetically less stable than those with even-numbered carbon chains which have alternating single and triple CC bonds. The electronic structure calculations indicate that -graphyne derivatives can be either metallic (when N is odd) or direct band gap semiconducting (when N is even). The existence of direct band gap can promote the efficient conversion of photoelectric energy, which indicates the advantage of -graphyne in the optoelectronic device. The band gaps of -2, 4, 6 are between 0.94 eV and 0.84 eV, the gap decreases with the number of triple CC bonds increasing, and increases with the augment of length of carbon chains in -2, 4, 6. Our first-principles studies show that introducing carbon chains between the hexagon carbon rings of graphene gives us a method to switch between metallic and semiconducting electronic structures by tuning the number of carbon atoms on the chains and provides a theoretical basis for designing and preparing the tunable s-p hybridized two-dimensional materials and nanoelectronic devices based on carbon atoms.
      通信作者: 朱梓忠, zzhu@xmu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0202601,2016YFB0901502)资助的课题.
      Corresponding author: Zhu Zi-Zhong, zzhu@xmu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program (Grant Nos. 2016YFA0202601, 2016YFB0901502).
    [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [6]

    Kong X Y, Ding Y, Yang R, Wang Z L 2004 Science 303 1348

    [7]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [8]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [9]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 ACS Nano 3 3788

    [10]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 ACS Nano 7 10075

    [11]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [12]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [13]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 物理学报 59 6438]

    [14]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 物理学报 59 4162]

    [15]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [16]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [17]

    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nanotechnology 3 206

    [18]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [19]

    Sun M L, Tang W C, Ren Q Q, Zhao Y M, Du Y H, Yu J, Du Y H, Hao Y T 2016 Physica E 80 142

    [20]

    Wang S K, Wang J 2015 Phys. Rev. B 92 075419

    [21]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [22]

    Kang J, Li J, Wu F, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466

    [23]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [24]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [25]

    Coluci V R, Braga S F, Legoas S B, Galvao D S, Baughman R H 2004 Nanotechnology 15 S142

    [26]

    Falcao E H L, Wudl F 2007 J. Chem. Technol. Biotechnol. 82 524

    [27]

    Hirsch A 2010 Nat. Mater. 9 868

    [28]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879

    [29]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [30]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [31]

    Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X 2011 J. Phys. Chem. C 115 8845

    [32]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [33]

    Li C, Li J, Wu F, Li S S, Xia J B, Wang L W 2011 J. Phys. Chem. C 115 23221

    [34]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [35]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [36]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [37]

    Lin S C, Buehler M 2013 J. Nanoscale 5 11801

    [38]

    Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [39]

    Ma Y, Dai Y, Guo M, Huang B 2012 Phys. Rev. B 85 235448

    [40]

    Brumfel G 2009 Nature 458 390

    [41]

    Kaloni T P, Cheng Y C, Schwingenschloegl U 2012 J. Mater. Chem. 22 919

    [42]

    Elias D C, Nair R R, Mohiuddin T M, et al. 2009 Science 323 610

    [43]

    Singh A K, Yakobson B I 2009 Nano Lett. 9 1540

    [44]

    Balog R, Jorgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315

    [45]

    Ma Y, Dai Y, Guo M, Niu C, Zhang Z, Huang B 2012 Phys. Chem. Chem. Phys. 14 3651

    [46]

    Burgess J S, Matis B R, Robinson J T, et al. 2011 Carbon 49 4420

    [47]

    Castellanos-Gomez A, Wojtaszek M, Arramel, Tombros N, van Wees B J 2012 Small 8 1607

    [48]

    Cocco G, Cadelano E, Colombo L 2010 Phys. Rev. B 81 241412

    [49]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [50]

    Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401

    [51]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [52]

    Schirber M 2012 Physics 5 24

    [53]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [54]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [55]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [56]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [57]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 ACS Nano 5 2964

    [58]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford) p108

  • [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [6]

    Kong X Y, Ding Y, Yang R, Wang Z L 2004 Science 303 1348

    [7]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [8]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [9]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 ACS Nano 3 3788

    [10]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 ACS Nano 7 10075

    [11]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [12]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [13]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 物理学报 59 6438]

    [14]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 物理学报 59 4162]

    [15]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [16]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [17]

    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nanotechnology 3 206

    [18]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [19]

    Sun M L, Tang W C, Ren Q Q, Zhao Y M, Du Y H, Yu J, Du Y H, Hao Y T 2016 Physica E 80 142

    [20]

    Wang S K, Wang J 2015 Phys. Rev. B 92 075419

    [21]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [22]

    Kang J, Li J, Wu F, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466

    [23]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [24]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [25]

    Coluci V R, Braga S F, Legoas S B, Galvao D S, Baughman R H 2004 Nanotechnology 15 S142

    [26]

    Falcao E H L, Wudl F 2007 J. Chem. Technol. Biotechnol. 82 524

    [27]

    Hirsch A 2010 Nat. Mater. 9 868

    [28]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879

    [29]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [30]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [31]

    Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X 2011 J. Phys. Chem. C 115 8845

    [32]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [33]

    Li C, Li J, Wu F, Li S S, Xia J B, Wang L W 2011 J. Phys. Chem. C 115 23221

    [34]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [35]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [36]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [37]

    Lin S C, Buehler M 2013 J. Nanoscale 5 11801

    [38]

    Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [39]

    Ma Y, Dai Y, Guo M, Huang B 2012 Phys. Rev. B 85 235448

    [40]

    Brumfel G 2009 Nature 458 390

    [41]

    Kaloni T P, Cheng Y C, Schwingenschloegl U 2012 J. Mater. Chem. 22 919

    [42]

    Elias D C, Nair R R, Mohiuddin T M, et al. 2009 Science 323 610

    [43]

    Singh A K, Yakobson B I 2009 Nano Lett. 9 1540

    [44]

    Balog R, Jorgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315

    [45]

    Ma Y, Dai Y, Guo M, Niu C, Zhang Z, Huang B 2012 Phys. Chem. Chem. Phys. 14 3651

    [46]

    Burgess J S, Matis B R, Robinson J T, et al. 2011 Carbon 49 4420

    [47]

    Castellanos-Gomez A, Wojtaszek M, Arramel, Tombros N, van Wees B J 2012 Small 8 1607

    [48]

    Cocco G, Cadelano E, Colombo L 2010 Phys. Rev. B 81 241412

    [49]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [50]

    Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401

    [51]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [52]

    Schirber M 2012 Physics 5 24

    [53]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [54]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [55]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [56]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [57]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 ACS Nano 5 2964

    [58]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford) p108

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦. Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性. 物理学报, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [3] 赖赣平, 张晓卫. 考虑原子亚稳态的镥金属蒸发过程模拟研究. 物理学报, 2023, 72(18): 184702. doi: 10.7498/aps.72.20230602
    [4] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性. 物理学报, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [5] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [6] 文琳, 樊群超, 蹇君, 范志祥, 李会东, 付佳, 马杰, 谢锋. 基于SO分子振转能级计算其宏观气体摩尔热容. 物理学报, 2022, 71(17): 175101. doi: 10.7498/aps.71.20212273
    [7] 王思远, 梁添寿, 时朋朋. 金属磁记忆应变诱导磁性变化的原子尺度作用机理. 物理学报, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [8] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [9] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换. 物理学报, 2022, 71(4): 043201. doi: 10.7498/aps.71.20211703
    [10] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [11] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [12] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [13] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [14] 曹春蕾, 徐进良, 叶文力. 周期性爆沸诱导的液滴自驱动. 物理学报, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [15] 姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯. 免分析光栅一次曝光相位衬度成像方法. 物理学报, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [16] 刘奇, 李璞, 开超, 胡春强, 蔡强, 张建国, 徐兵杰. 基于时延光子储备池计算的混沌激光短期预测. 物理学报, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [17] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [18] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [19] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [20] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
计量
  • 文章访问数:  6133
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-19
  • 修回日期:  2017-03-11
  • 刊出日期:  2017-05-05

/

返回文章
返回