搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨炔衍生物结构稳定性和电子结构的第一性原理研究

陈献 程梅娟 吴顺情 朱梓忠

引用本文:
Citation:

石墨炔衍生物结构稳定性和电子结构的第一性原理研究

陈献, 程梅娟, 吴顺情, 朱梓忠

First-principle study of structure stability and electronic structures of graphyne derivatives

Chen Xian, Cheng Mei-Juan, Wu Shun-Qing, Zhu Zi-Zhong
PDF
导出引用
  • 通过基于密度泛函理论的第一原理计算,系统研究了石墨炔衍生物的结构稳定性、原子构型和电子性质.石墨炔衍生物的结构是由碳六元环以及连接六元环间的碳链组成,碳链上的碳原子数为N=16.研究结果表明,碳链上碳原子数的奇偶性对石墨炔衍生物的结构稳定和相应的原子构型、电子结构性质具有很大的影响.其奇偶性规律为: 当六元环间的碳原子数为奇数时,体系中的碳链均为双键排布,系统呈现金属性;当六元环间的碳原子数为偶数时,系统中的碳链形式为单、三键交替排列,体系为直接带隙的半导体.直接带隙的存在能够促进光电能的高效转换,预示着石墨炔在光电子器件中的应用优势.N= 2,4,6的带隙分布在0.940.84 eV之间,带隙的大小与碳链上三键的数量和长度有关.研究表明,将碳原子链引入到石墨烯碳六元环之间,通过控制引入的碳原子个数可以调控其金属和半导体电子特性,为设计和制备基于碳原子的可调控s-p杂化的二维材料和纳米电子器件提供了理论依据.
    A new carbon allotropegraphyne has attracted a lot of attention in the field of material sciences and condensed-matter physics due to its unique structure and excellent electronic, optical and mechanical properties. First-principles calculations based on the density functional theory (DFT) are performed to investigate the structures, energetic stabilities and electronic structures of -graphyne derivatives ( -N). The studied -graphyne derivative consists of hexagon carbon rings connected by onedimensional carbon chains with various numbers of carbon atoms (N=1-6) on the chain. The calculation results show that the parity of number of carbon atoms on the carbon chains has a great influence on the structural configuration, the structural stability and the electronic property of the system. The -graphyne derivatives with odd-numbered carbon chains possess continuous CC double bonds, energetically less stable than those with even-numbered carbon chains which have alternating single and triple CC bonds. The electronic structure calculations indicate that -graphyne derivatives can be either metallic (when N is odd) or direct band gap semiconducting (when N is even). The existence of direct band gap can promote the efficient conversion of photoelectric energy, which indicates the advantage of -graphyne in the optoelectronic device. The band gaps of -2, 4, 6 are between 0.94 eV and 0.84 eV, the gap decreases with the number of triple CC bonds increasing, and increases with the augment of length of carbon chains in -2, 4, 6. Our first-principles studies show that introducing carbon chains between the hexagon carbon rings of graphene gives us a method to switch between metallic and semiconducting electronic structures by tuning the number of carbon atoms on the chains and provides a theoretical basis for designing and preparing the tunable s-p hybridized two-dimensional materials and nanoelectronic devices based on carbon atoms.
      通信作者: 朱梓忠, zzhu@xmu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0202601,2016YFB0901502)资助的课题.
      Corresponding author: Zhu Zi-Zhong, zzhu@xmu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program (Grant Nos. 2016YFA0202601, 2016YFB0901502).
    [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [6]

    Kong X Y, Ding Y, Yang R, Wang Z L 2004 Science 303 1348

    [7]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [8]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [9]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 ACS Nano 3 3788

    [10]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 ACS Nano 7 10075

    [11]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [12]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [13]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 物理学报 59 6438]

    [14]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 物理学报 59 4162]

    [15]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [16]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [17]

    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nanotechnology 3 206

    [18]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [19]

    Sun M L, Tang W C, Ren Q Q, Zhao Y M, Du Y H, Yu J, Du Y H, Hao Y T 2016 Physica E 80 142

    [20]

    Wang S K, Wang J 2015 Phys. Rev. B 92 075419

    [21]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [22]

    Kang J, Li J, Wu F, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466

    [23]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [24]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [25]

    Coluci V R, Braga S F, Legoas S B, Galvao D S, Baughman R H 2004 Nanotechnology 15 S142

    [26]

    Falcao E H L, Wudl F 2007 J. Chem. Technol. Biotechnol. 82 524

    [27]

    Hirsch A 2010 Nat. Mater. 9 868

    [28]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879

    [29]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [30]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [31]

    Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X 2011 J. Phys. Chem. C 115 8845

    [32]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [33]

    Li C, Li J, Wu F, Li S S, Xia J B, Wang L W 2011 J. Phys. Chem. C 115 23221

    [34]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [35]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [36]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [37]

    Lin S C, Buehler M 2013 J. Nanoscale 5 11801

    [38]

    Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [39]

    Ma Y, Dai Y, Guo M, Huang B 2012 Phys. Rev. B 85 235448

    [40]

    Brumfel G 2009 Nature 458 390

    [41]

    Kaloni T P, Cheng Y C, Schwingenschloegl U 2012 J. Mater. Chem. 22 919

    [42]

    Elias D C, Nair R R, Mohiuddin T M, et al. 2009 Science 323 610

    [43]

    Singh A K, Yakobson B I 2009 Nano Lett. 9 1540

    [44]

    Balog R, Jorgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315

    [45]

    Ma Y, Dai Y, Guo M, Niu C, Zhang Z, Huang B 2012 Phys. Chem. Chem. Phys. 14 3651

    [46]

    Burgess J S, Matis B R, Robinson J T, et al. 2011 Carbon 49 4420

    [47]

    Castellanos-Gomez A, Wojtaszek M, Arramel, Tombros N, van Wees B J 2012 Small 8 1607

    [48]

    Cocco G, Cadelano E, Colombo L 2010 Phys. Rev. B 81 241412

    [49]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [50]

    Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401

    [51]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [52]

    Schirber M 2012 Physics 5 24

    [53]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [54]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [55]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [56]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [57]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 ACS Nano 5 2964

    [58]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford) p108

  • [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [6]

    Kong X Y, Ding Y, Yang R, Wang Z L 2004 Science 303 1348

    [7]

    Chuvilin A, Meyer J C, Algara-Siller G, Kaiser U 2009 New J. Phys. 11 083019

    [8]

    Jin C H, Lan H P, Peng L M, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 205501

    [9]

    Fan X F, Liu L, Lin J Y, Shen Z X, Kuo J L 2009 ACS Nano 3 3788

    [10]

    Liu M J, Artyukhov V I, Lee H, Xu F B, Yakobson B I 2013 ACS Nano 7 10075

    [11]

    Liu Y, Jones R O, Zhao X L, Ando Y 2003 Phys. Rev. B 68 125413

    [12]

    Zhao X L, Ando Y, Liu Y, Jinno M, Suzuki T 2003 Phys. Rev. Lett. 90 187401

    [13]

    Cao R G, Wang Y, Lin Z Z, Ming C, Zhuang J, Ning X J 2010 Acta Phys. Sin. 59 6438 (in Chinese) [曹荣根, 王音, 林正喆, 明辰, 庄军, 宁西京 2010 物理学报 59 6438]

    [14]

    Qiu M, Zhang Z H, Deng X Q 2010 Acta Phys. Sin. 59 4162 (in Chinese) [邱明, 张振华, 邓小清 2010 物理学报 59 4162]

    [15]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [16]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902

    [17]

    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nanotechnology 3 206

    [18]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [19]

    Sun M L, Tang W C, Ren Q Q, Zhao Y M, Du Y H, Yu J, Du Y H, Hao Y T 2016 Physica E 80 142

    [20]

    Wang S K, Wang J 2015 Phys. Rev. B 92 075419

    [21]

    Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009

    [22]

    Kang J, Li J, Wu F, Li S S, Xia J B 2011 J. Phys. Chem. C 115 20466

    [23]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [24]

    Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687

    [25]

    Coluci V R, Braga S F, Legoas S B, Galvao D S, Baughman R H 2004 Nanotechnology 15 S142

    [26]

    Falcao E H L, Wudl F 2007 J. Chem. Technol. Biotechnol. 82 524

    [27]

    Hirsch A 2010 Nat. Mater. 9 868

    [28]

    Enyashin A N, Ivanovskii A L 2011 Phys. Status Solidi B 248 1879

    [29]

    Malko D, Neiss C, Vines F, Gorling A 2012 Phys. Rev. Lett. 108 086804

    [30]

    Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256

    [31]

    Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X 2011 J. Phys. Chem. C 115 8845

    [32]

    Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C 116 5951

    [33]

    Li C, Li J, Wu F, Li S S, Xia J B, Wang L W 2011 J. Phys. Chem. C 115 23221

    [34]

    Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H 2013 Appl. Phys. Lett. 103 263904

    [35]

    Hwang H J, Koo J, Park M, Park N, Kwon Y, Lee H 2013 J. Phys. Chem. C 117 6919

    [36]

    Zhao W H, Yuan L F, Yang J L 2012 Chin. J. Chem. Phys. 25 434

    [37]

    Lin S C, Buehler M 2013 J. Nanoscale 5 11801

    [38]

    Novoselov K S, Jiang D, Schedin F, et al. 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [39]

    Ma Y, Dai Y, Guo M, Huang B 2012 Phys. Rev. B 85 235448

    [40]

    Brumfel G 2009 Nature 458 390

    [41]

    Kaloni T P, Cheng Y C, Schwingenschloegl U 2012 J. Mater. Chem. 22 919

    [42]

    Elias D C, Nair R R, Mohiuddin T M, et al. 2009 Science 323 610

    [43]

    Singh A K, Yakobson B I 2009 Nano Lett. 9 1540

    [44]

    Balog R, Jorgensen B, Nilsson L, et al. 2010 Nat. Mater. 9 315

    [45]

    Ma Y, Dai Y, Guo M, Niu C, Zhang Z, Huang B 2012 Phys. Chem. Chem. Phys. 14 3651

    [46]

    Burgess J S, Matis B R, Robinson J T, et al. 2011 Carbon 49 4420

    [47]

    Castellanos-Gomez A, Wojtaszek M, Arramel, Tombros N, van Wees B J 2012 Small 8 1607

    [48]

    Cocco G, Cadelano E, Colombo L 2010 Phys. Rev. B 81 241412

    [49]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [50]

    Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401

    [51]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [52]

    Schirber M 2012 Physics 5 24

    [53]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [54]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [55]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [56]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [57]

    Lee S H, Chung H J, Heo J, Yang H, Shin J, Chung U I, Seo S 2011 ACS Nano 5 2964

    [58]

    Peierls R E 1955 Quantum Theory of Solids (Clarendon: Oxford) p108

  • [1] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [2] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [4] 丁庆松, 罗朝波, 彭向阳, 师习之, 何朝宇, 钟建新. 硅石墨烯g-SiC7的Si分布和结构的第一性原理研究. 物理学报, 2021, 70(19): 196101. doi: 10.7498/aps.70.20210621
    [5] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [6] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [7] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [8] 蔡梦圆, 唐春梅, 张秋月. Li离子电池负极材料石墨炔在B, N掺杂调控下的储Li性能优化. 物理学报, 2019, 68(21): 213601. doi: 10.7498/aps.68.20191161
    [9] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [10] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [11] 迟宝倩, 刘轶, 徐京城, 秦绪明, 孙辰, 白晟灏, 刘一璠, 赵新洛, 李小武. 石墨炔衍生物结构稳定性及电子结构的密度泛函理论研究. 物理学报, 2016, 65(13): 133101. doi: 10.7498/aps.65.133101
    [12] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究. 物理学报, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [13] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [14] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [15] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算. 物理学报, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [16] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [17] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [18] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
计量
  • 文章访问数:  7568
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-19
  • 修回日期:  2017-03-11
  • 刊出日期:  2017-05-05

/

返回文章
返回