搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正

刘清友 罗旭 朱海燕 韩一维 刘建勋

引用本文:
Citation:

基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正

刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋

Modeling plastic deformation effect on the hysteresis loops of ferromagnetic materials based on modified Jiles-Atherton model

Liu Qing-You, Luo Xu, Zhu Hai-Yan, Han Yi-Wei, Liu Jian-Xun
PDF
导出引用
  • Jiles-Atherton(J-A)模型在磁化建模领域应用广泛,但不同文献给出的J-A模型并不一致,致使采用不同表达式建立的塑性变形磁化模型存在多种版本,其正确性难以甄别.通过对无磁滞磁化方程、能量守恒方程和等效磁场强度方程的梳理与比较,发现原有模型中存在将磁化强度和无磁滞磁化强度混用、将不可逆磁化能量等效于全部的磁化能量、等效磁场强度中应力磁化项界定不清等问题.在此基础上,对上述方程进行了修正,推导了基于J-A模型的塑性变形磁化修正模型.将修正模型计算结果与原模型计算结果、相关文献中的试验结果进行对比,结果表明: 与原有计算模型相比,修正模型计算结果的饱和磁化强度和剩余磁化强度随塑性变形增加而减小,矫顽力随塑性变形增大而增大,达到饱和磁化强度时的外磁场强度随塑性变形增大而增大的趋势有所减弱,更符合试验结果,可更准确地反映塑性变形对材料磁化的影响.
    Plastic deformation is one of the most important features that affect the hysteresis magnetic properties of steels, because it changes the dislocation density and affects domain-wall movement and pinning. In order to model the effect of plastic deformation on the magnetic properties, the prevailing Jiles-Atherton (J-A) theory is extensively used. However, the J-A models in a series of papers published by Jiles et al. are not completely consistent. As a result, there exists no uniform formula of magneto-plastic model established by different researchers, based on different J-A models, and various versions given by different mathematic expressions of magneto-plastic model often create difficulty in discriminating the accuracies and effectivenesses of the analyzed results. Therefore, it is necessary to establish an accurate and reasonable magneto-plastic model. In this paper, on the basis of magnetization mechanism of ferrimagnet and plastic deformation model, the effects of plastic deformation on the magnetic characteristic parameters adopted in magneto-plastic model, such as dislocation density, pinning coefficient and scaling constant, are analyzed and the relationship between them is first established. Then, by contrasting the fitting formula of the anhysteretic magnetization curve, the energy conservation equation and the effective magnetic field equation established by different researchers, several queries are proposed, and the irrationality and inaccuracy of the existing magneto-plastic model are elucidated, such as the mixing of anhysteresis magnetization and magnetization, the unreasonably regarding the irreversible magnetization energy as actual total magnetization energy. Thus, the energy conservation equation, the effective magnetic field equation and the anhysteretic magnetization equation are modified, and the differential expression of the magneto-plastic model is re-derived finally. Comparing the results calculated by the existing magneto-plastic models with the experimental results, it is seen indeed that a more sharp change of magnetization appears at small plastic deformation, then, the values of magnetization decrease more slowly with the increase of plastic deformation than those from the models respectively proposed by Li Jian-Wei, Leng Jian-Cheng and Wang Zheng-Dao; the saturation magnetization and residual magnetization decrease with the increase of plastic deformation, the coercive force is increased oppositely and the trend to reach the saturation magnetization becomes gentler, which is more exactly consonant with experiment observation than that calculated by the Sablik's model; additionally, the hysteresis loops of the plastically deformed carbon-steel samples calculated by the modified magneto-plastic model are also in better agreement with the experimental results than those from the existing models. Consequently, the modification is effective, and the modified magneto-plastic model is more accurate to simulate the plastic deformation effect on the magnetic property of ferromagnetic material.
      通信作者: 罗旭, 402585133@qq.com
    • 基金项目: 四川省科技计划重大项目(批准号:2015SZ0010)、四川省科技支撑计划(批准号:2013GZ0150)和四川省科技计划项目(批准号:2014GZ0121)资助的课题.
      Corresponding author: Luo Xu, 402585133@qq.com
    • Funds: Project supported by the Major Program of Sichuan Province Science and Technology Plan, China (Grant No. 2015SZ0010), the Key Technology Research and Development Program of Sichuan Province, China (Grant No. 2013GZ0150), and the Scientific Research Foundation of Sichuan Province, China (Grant No. 2014GZ0121).
    [1]

    Li Z, Li Q M, Li C Y, Sun Q Q, Lou J 2011 Proc. Chin. Soc. Elect. Eng. 31 124 (in Chinese) [李贞, 李庆民, 李长云, 孙秋芹, 娄杰 2011 中国电机工程学报 31 124]

    [2]

    Jiles D C, Atherton D L 1984 J. Appl. Phys. 55 2115

    [3]

    Jiles D C, Atherton D L 1986 J.Magn. Magn. Mater. 61 48

    [4]

    Jiles D C 1992 IEEE Trans. Magn. 28 27

    [5]

    Jiles D C, Thoelke J B 1989 IEEE Trans. Magn. 25 3928

    [6]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113

    [7]

    Jiles D C 1995 J.Appl. Phys. 28 1537

    [8]

    Jiles D C 1994 J.Appl. Phys. 76 5849

    [9]

    Jiles D C, Li L 2004 J. Appl. Phys. 95 7058

    [10]

    Sablik M J 2004 IEEE Trans. Magn. 40 3219

    [11]

    Sablik M J, Geerts W J, Smith K, Gregory A, Moore C 2010 IEEE Trans. Magn. 46 491

    [12]

    Sablik M J, Landgraf F J G, Paolo S Comparing grain size and dislocation density effects for hysteresis loops with the same maximum flux density in a magnetic hysteresis model https://wwwresearchgatenet /publication/265264412 [2017-03-08]

    [13]

    Sablik M J, Rios S, Landgraf F J G 2005 J. Appl. Phys. 97 10E518

    [14]

    Suliga M, Borowik L, Chwastek K 2015 Arch. Metall. Mater. 60 409

    [15]

    Wang Z D, Deng B, Yao K 2011 J. Appl. Phys. 109 083928

    [16]

    Li J W, Xu M Q, Leng J C, Xu M X 2012 J.Appl. Phys. 111 063909

    [17]

    Leng J C, Liu Y, Zhou G Q 2013 NDT&E Int. 55 42

    [18]

    Jiang P, Wang W 2009 Fundamentals of Engineering Mechanics(II): Mechanics of Materials (Beijing: Higher Education Press) pp61-63 (in Chinese) [蒋平, 王维 2009 工程力学基础(II): 材料力学(北京: 高等教育出版社) 第61—63页].

    [19]

    Doubov A A K V G 2001 Proceedings of the Second International Conference ''Diagnostics of the Equipment and Constructions with Usage of Metal Magnetic Memory'' Moscow, Russia, February 26-28, 2001 p1

    [20]

    Jiles D C 2000 J.Appl. Phys. 21 1196

    [21]

    Makar J M, Tanner B K 1998 J. Magn. Magn. Mater. 184 193

    [22]

    Iordache V E, Hug E, Buiron N 2003 Mat.Sci. Eng. A-Struct. 359 62

    [23]

    Makar J M, Tanner B K 2000 J. Magn. Magn. Mater. 222 291

  • [1]

    Li Z, Li Q M, Li C Y, Sun Q Q, Lou J 2011 Proc. Chin. Soc. Elect. Eng. 31 124 (in Chinese) [李贞, 李庆民, 李长云, 孙秋芹, 娄杰 2011 中国电机工程学报 31 124]

    [2]

    Jiles D C, Atherton D L 1984 J. Appl. Phys. 55 2115

    [3]

    Jiles D C, Atherton D L 1986 J.Magn. Magn. Mater. 61 48

    [4]

    Jiles D C 1992 IEEE Trans. Magn. 28 27

    [5]

    Jiles D C, Thoelke J B 1989 IEEE Trans. Magn. 25 3928

    [6]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113

    [7]

    Jiles D C 1995 J.Appl. Phys. 28 1537

    [8]

    Jiles D C 1994 J.Appl. Phys. 76 5849

    [9]

    Jiles D C, Li L 2004 J. Appl. Phys. 95 7058

    [10]

    Sablik M J 2004 IEEE Trans. Magn. 40 3219

    [11]

    Sablik M J, Geerts W J, Smith K, Gregory A, Moore C 2010 IEEE Trans. Magn. 46 491

    [12]

    Sablik M J, Landgraf F J G, Paolo S Comparing grain size and dislocation density effects for hysteresis loops with the same maximum flux density in a magnetic hysteresis model https://wwwresearchgatenet /publication/265264412 [2017-03-08]

    [13]

    Sablik M J, Rios S, Landgraf F J G 2005 J. Appl. Phys. 97 10E518

    [14]

    Suliga M, Borowik L, Chwastek K 2015 Arch. Metall. Mater. 60 409

    [15]

    Wang Z D, Deng B, Yao K 2011 J. Appl. Phys. 109 083928

    [16]

    Li J W, Xu M Q, Leng J C, Xu M X 2012 J.Appl. Phys. 111 063909

    [17]

    Leng J C, Liu Y, Zhou G Q 2013 NDT&E Int. 55 42

    [18]

    Jiang P, Wang W 2009 Fundamentals of Engineering Mechanics(II): Mechanics of Materials (Beijing: Higher Education Press) pp61-63 (in Chinese) [蒋平, 王维 2009 工程力学基础(II): 材料力学(北京: 高等教育出版社) 第61—63页].

    [19]

    Doubov A A K V G 2001 Proceedings of the Second International Conference ''Diagnostics of the Equipment and Constructions with Usage of Metal Magnetic Memory'' Moscow, Russia, February 26-28, 2001 p1

    [20]

    Jiles D C 2000 J.Appl. Phys. 21 1196

    [21]

    Makar J M, Tanner B K 1998 J. Magn. Magn. Mater. 184 193

    [22]

    Iordache V E, Hug E, Buiron N 2003 Mat.Sci. Eng. A-Struct. 359 62

    [23]

    Makar J M, Tanner B K 2000 J. Magn. Magn. Mater. 222 291

  • [1] 褚欣博, 金钻明, 吴旭, 李婧楠, 沈阳, 王若愚, 季秉煜, 李章顺, 彭滟. 铁磁异质结的远红外脉冲辐射及其光热调控研究. 物理学报, 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [2] 罗旭, 王丽红, 吕良, 曹书峰, 董学成, 赵建国. 基于面磁荷密度的金属磁记忆检测正演模型. 物理学报, 2022, 71(15): 154101. doi: 10.7498/aps.71.20220176
    [3] 时朋朋, 郝帅. 磁记忆检测的力磁耦合型磁偶极子理论及解析解. 物理学报, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [4] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [5] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响. 物理学报, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [6] 王宏明, 朱弋, 李桂荣, 郑瑞. 强磁与应力场耦合作用下AZ31镁合金塑性变形行为. 物理学报, 2016, 65(14): 146101. doi: 10.7498/aps.65.146101
    [7] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变. 物理学报, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [8] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟. 物理学报, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [9] 宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高. Dy, Co共掺杂对BiFeO3陶瓷磁特性和磁相变温度Tc的影响. 物理学报, 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [10] 章鹏, 刘琳, 陈伟民. 磁性应力监测中力磁耦合特征及关键影响因素分析. 物理学报, 2013, 62(17): 177501. doi: 10.7498/aps.62.177501
    [11] 朱洁, 苏垣昌, 潘靖, 封国林. 高斯型非均匀应力对铁磁薄膜磁化性质的影响. 物理学报, 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [12] 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力. 物理学报, 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [13] 宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高. Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响. 物理学报, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [14] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究. 物理学报, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [15] 鲜承伟, 赵国平, 张庆香, 徐劲松. 垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转. 物理学报, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [16] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [17] 肖春涛, 曹先胜. La0.67Pb0.33MnO3的Preisach分析. 物理学报, 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [18] 郑 鹉, 王艾玲, 姜宏伟, 周云松, 李 彤. Co-Pt-C颗粒膜的磁性. 物理学报, 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [19] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [20] 王文虎, 李世亮, 陈兆甲, 闻海虎, 熊玉峰. Bi2Sr2CaCu2O8单晶中的反常尖锋效应. 物理学报, 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
计量
  • 文章访问数:  7977
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-10
  • 修回日期:  2017-03-10
  • 刊出日期:  2017-05-05

/

返回文章
返回