搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力

王光建 蒋成保

引用本文:
Citation:

Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力

王光建, 蒋成保

The coercivity of the high temperature magnets Sm(CobalFe0.1Cu0.1Zr0.033)6.9 alloys

Wang Guang-Jian, Jiang Cheng-Bao
PDF
导出引用
  • 对Sm(CobalFe0.1Cu0.1Zr0.033)6.9合金, 经810℃等温时效后以0.5℃/min逐渐冷却, 在600℃-400℃温度区间淬火, 研究了不同淬火温度下的磁滞回线、磁畴和矫顽力温度系数β. 发现时效600℃淬火后磁滞回线出现台阶状, 说明畴壁中应存在两处钉扎. 随淬火温度的降低, 合金的室温矫顽力显著增加, 磁滞回线的台阶消失. 通过磁畴形貌发现时效600℃淬火后的磁畴接近条形畴, 1:5相中Cu分布相对均匀, 形成的畴壁钉扎较弱, 从而使磁滞回线出现台阶, 决定矫顽力的畴壁钉扎位于两相界面处; 随时效淬火温度的降低, 磁畴逐渐细化, 畴壁1:5相中的畴壁能降低, 形成了较强的内禀钉扎, 并决定材料的矫顽力, 两相界面处的畴壁钉扎被掩盖. 对不同温度淬火合金的高温矫顽力研究表明, 最强的畴壁钉扎位于两相界面处时, 矫顽力随温度升高逐渐增加, 矫顽力出现温度反常现象; 最强的畴壁钉扎位于1:5相中心时, 矫顽力随温度升高逐渐衰减. 当测试温度达到500℃后不同淬火温度样品的矫顽力几乎相同, 此时最强畴壁钉扎均在两相界面处.
    The hysteresis behaviors domain structures and temperature coefficients of coercivity are investigated in Sm(CobalFe0.1 Cu0.1Zr0.033)6.9, which is aged at 810℃ and slowly cooled with a rate of 0.5℃/min, and then quenched at different temperatures. It is found that the demagnetization cures show two steps clearly as the alloys are quenched at 600℃, which means that there should have two pinnings on the domain wall, and its domain structure appears more as a zigzag shape domain, which means that there should be a small gradient of Cu distribution in the 1:5 cell boundary phase and a small domain wall pinning in the cell boundary phase. The maximum domain wall pinning should be at the interface between the 1:5 cell boundary phase and 2:17 cell phase. As the alloys are quenched at a lower temperature, the steps in the demagnetization cures disappear. At the same time, their domain structures become narrower, and show more attached domains, which means that a lower domain wall energy is in the 1:5 cell boundary phase and that the maximum domain wall pinning should be in the center of the 1:5 cell boundary phase. As the maximum domain wall pinning is at the interface between the 1:5 cell boundary phase and 2:17 cell phase, the coercivity will show an abnormal temperature dependence. While as the maximum domain wall pinning is in the center of the 1:5 cell boundary phase, the coercivity will decrease with temperature increasing. As the testing temperature rises to 500℃, the coercivities for all samples nearly come to the same values, and the maximum domain wall pinnings all should come to the interface between the 1:5 cell boundary phase and 2:17 cell phase.
    • 基金项目: 国家自然科学基金(批准号: 51071010)和中央高校基本科研业务费资助的课题.
    • Funds: Project supported the National Natural Science Foundation of China (Grant No. 51071010), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Liu J F, Chui T, Dimitrov D, Hadjipanayis G C 1998 Appl. Phys. Lett. 73 3007

    [2]

    Streibl B, Fidler J, Schrefl T 2000 J. Appl. Phys. 87 4765

    [3]

    Gopalan R, Ohkubo T, Hono K 2006 Scri. Mater. 54 1345

    [4]

    Romero S A, de Campos M F, Rechenberg H R, Missell F P 2008 J. Magn. Magn. Mater. 320 e73

    [5]

    Liu J F, Ding Y, Zhang Y, Dimitar D, Zhang F, Hadjipanayis G C 1999 J. Appl. Phys. 85 5660

    [6]

    Rong C B, Zhang H W, Chen R J, Shen B G, He S L, Liu J P 2006 J. Phys. D: Appl. Phys. 39 437

    [7]

    Huang M Q, Turgut Z, Ma B M, Chen Z M, Lee D, Higgins A, Chen C H, Liu S, Chu S Y, Horwath J C, Fingers R T 2008 J. Appl. Phys. 103 07E134

    [8]

    Yan A, Gutfleisch O, Handstein A, Gemming T, Muller K H 2003 J. Appl. Phys. 93 7975

    [9]

    Gopalan R, Hono K, Yan A, Gutfleisch O 2009 Scri. Mater. 60 764

    [10]

    Xiong X Y, Ohkubo T, Koyama T, Ohashi K, Tawara K, Hono K 2004 Acta Mater. 52 737

    [11]

    Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz T 2006 Acta Mater. 54 997

    [12]

    Craik D J, Hill E 1974 Phys. Lett. 48 157

    [13]

    Liu J F, Hadjipanayis G C 1999 J. Magn. Magn. Mater. 195 620

    [14]

    Liu J F, Zhang Y, Dimitrov D, Hadjipanayis G C 1999 J. Appl. Phys. 85 2800

    [15]

    Liu S, Yang J, Doyle G, Potts G, Kuhl G 2000 J. Appl. Phys. 87 6728

    [16]

    Kronmüller H, Goll D 2002 Scri. Mater. 47 545

  • [1]

    Liu J F, Chui T, Dimitrov D, Hadjipanayis G C 1998 Appl. Phys. Lett. 73 3007

    [2]

    Streibl B, Fidler J, Schrefl T 2000 J. Appl. Phys. 87 4765

    [3]

    Gopalan R, Ohkubo T, Hono K 2006 Scri. Mater. 54 1345

    [4]

    Romero S A, de Campos M F, Rechenberg H R, Missell F P 2008 J. Magn. Magn. Mater. 320 e73

    [5]

    Liu J F, Ding Y, Zhang Y, Dimitar D, Zhang F, Hadjipanayis G C 1999 J. Appl. Phys. 85 5660

    [6]

    Rong C B, Zhang H W, Chen R J, Shen B G, He S L, Liu J P 2006 J. Phys. D: Appl. Phys. 39 437

    [7]

    Huang M Q, Turgut Z, Ma B M, Chen Z M, Lee D, Higgins A, Chen C H, Liu S, Chu S Y, Horwath J C, Fingers R T 2008 J. Appl. Phys. 103 07E134

    [8]

    Yan A, Gutfleisch O, Handstein A, Gemming T, Muller K H 2003 J. Appl. Phys. 93 7975

    [9]

    Gopalan R, Hono K, Yan A, Gutfleisch O 2009 Scri. Mater. 60 764

    [10]

    Xiong X Y, Ohkubo T, Koyama T, Ohashi K, Tawara K, Hono K 2004 Acta Mater. 52 737

    [11]

    Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz T 2006 Acta Mater. 54 997

    [12]

    Craik D J, Hill E 1974 Phys. Lett. 48 157

    [13]

    Liu J F, Hadjipanayis G C 1999 J. Magn. Magn. Mater. 195 620

    [14]

    Liu J F, Zhang Y, Dimitrov D, Hadjipanayis G C 1999 J. Appl. Phys. 85 2800

    [15]

    Liu S, Yang J, Doyle G, Potts G, Kuhl G 2000 J. Appl. Phys. 87 6728

    [16]

    Kronmüller H, Goll D 2002 Scri. Mater. 47 545

  • [1] 褚欣博, 金钻明, 吴旭, 李婧楠, 沈阳, 王若愚, 季秉煜, 李章顺, 彭滟. 铁磁异质结的远红外脉冲辐射及其光热调控研究. 物理学报, 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [2] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [3] 郝俊祥, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 贾利军马博, 吴玉娟. 晶格失配应力对单晶(BiTm)3(GaFe)5O12膜磁畴结构的影响. 物理学报, 2018, 67(11): 117801. doi: 10.7498/aps.67.20180192
    [4] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响. 物理学报, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [5] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正. 物理学报, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [6] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变. 物理学报, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [7] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟. 物理学报, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [8] 宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高. Dy, Co共掺杂对BiFeO3陶瓷磁特性和磁相变温度Tc的影响. 物理学报, 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [9] 朱洁, 苏垣昌, 潘靖, 封国林. 高斯型非均匀应力对铁磁薄膜磁化性质的影响. 物理学报, 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [10] 宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高. Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响. 物理学报, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [11] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究. 物理学报, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [12] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [13] 鲜承伟, 赵国平, 张庆香, 徐劲松. 垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转. 物理学报, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [14] 胡云志, 孙会元. 脉冲偏场作用下石榴石磁泡薄膜中布洛赫线的形成. 物理学报, 2008, 57(8): 5256-5260. doi: 10.7498/aps.57.5256
    [15] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [16] 肖春涛, 曹先胜. La0.67Pb0.33MnO3的Preisach分析. 物理学报, 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [17] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [18] 姜文红, 罗四维, 中村庆久. 写磁头对记录介质中输出信号的影响. 物理学报, 2002, 51(1): 167-170. doi: 10.7498/aps.51.167
    [19] 王文虎, 李世亮, 陈兆甲, 闻海虎, 熊玉峰. Bi2Sr2CaCu2O8单晶中的反常尖锋效应. 物理学报, 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
    [20] 新材料室. 液相烧结SmCo5永磁体磁滞回线与温度的关系. 物理学报, 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
计量
  • 文章访问数:  7227
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-11
  • 修回日期:  2012-02-26
  • 刊出日期:  2012-09-05

/

返回文章
返回