搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力

王光建 蒋成保

引用本文:
Citation:

Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力

王光建, 蒋成保

The coercivity of the high temperature magnets Sm(CobalFe0.1Cu0.1Zr0.033)6.9 alloys

Wang Guang-Jian, Jiang Cheng-Bao
PDF
导出引用
  • 对Sm(CobalFe0.1Cu0.1Zr0.033)6.9合金, 经810℃等温时效后以0.5℃/min逐渐冷却, 在600℃-400℃温度区间淬火, 研究了不同淬火温度下的磁滞回线、磁畴和矫顽力温度系数β. 发现时效600℃淬火后磁滞回线出现台阶状, 说明畴壁中应存在两处钉扎. 随淬火温度的降低, 合金的室温矫顽力显著增加, 磁滞回线的台阶消失. 通过磁畴形貌发现时效600℃淬火后的磁畴接近条形畴, 1:5相中Cu分布相对均匀, 形成的畴壁钉扎较弱, 从而使磁滞回线出现台阶, 决定矫顽力的畴壁钉扎位于两相界面处; 随时效淬火温度的降低, 磁畴逐渐细化, 畴壁1:5相中的畴壁能降低, 形成了较强的内禀钉扎, 并决定材料的矫顽力, 两相界面处的畴壁钉扎被掩盖. 对不同温度淬火合金的高温矫顽力研究表明, 最强的畴壁钉扎位于两相界面处时, 矫顽力随温度升高逐渐增加, 矫顽力出现温度反常现象; 最强的畴壁钉扎位于1:5相中心时, 矫顽力随温度升高逐渐衰减. 当测试温度达到500℃后不同淬火温度样品的矫顽力几乎相同, 此时最强畴壁钉扎均在两相界面处.
    The hysteresis behaviors domain structures and temperature coefficients of coercivity are investigated in Sm(CobalFe0.1 Cu0.1Zr0.033)6.9, which is aged at 810℃ and slowly cooled with a rate of 0.5℃/min, and then quenched at different temperatures. It is found that the demagnetization cures show two steps clearly as the alloys are quenched at 600℃, which means that there should have two pinnings on the domain wall, and its domain structure appears more as a zigzag shape domain, which means that there should be a small gradient of Cu distribution in the 1:5 cell boundary phase and a small domain wall pinning in the cell boundary phase. The maximum domain wall pinning should be at the interface between the 1:5 cell boundary phase and 2:17 cell phase. As the alloys are quenched at a lower temperature, the steps in the demagnetization cures disappear. At the same time, their domain structures become narrower, and show more attached domains, which means that a lower domain wall energy is in the 1:5 cell boundary phase and that the maximum domain wall pinning should be in the center of the 1:5 cell boundary phase. As the maximum domain wall pinning is at the interface between the 1:5 cell boundary phase and 2:17 cell phase, the coercivity will show an abnormal temperature dependence. While as the maximum domain wall pinning is in the center of the 1:5 cell boundary phase, the coercivity will decrease with temperature increasing. As the testing temperature rises to 500℃, the coercivities for all samples nearly come to the same values, and the maximum domain wall pinnings all should come to the interface between the 1:5 cell boundary phase and 2:17 cell phase.
    • 基金项目: 国家自然科学基金(批准号: 51071010)和中央高校基本科研业务费资助的课题.
    • Funds: Project supported the National Natural Science Foundation of China (Grant No. 51071010), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Liu J F, Chui T, Dimitrov D, Hadjipanayis G C 1998 Appl. Phys. Lett. 73 3007

    [2]

    Streibl B, Fidler J, Schrefl T 2000 J. Appl. Phys. 87 4765

    [3]

    Gopalan R, Ohkubo T, Hono K 2006 Scri. Mater. 54 1345

    [4]

    Romero S A, de Campos M F, Rechenberg H R, Missell F P 2008 J. Magn. Magn. Mater. 320 e73

    [5]

    Liu J F, Ding Y, Zhang Y, Dimitar D, Zhang F, Hadjipanayis G C 1999 J. Appl. Phys. 85 5660

    [6]

    Rong C B, Zhang H W, Chen R J, Shen B G, He S L, Liu J P 2006 J. Phys. D: Appl. Phys. 39 437

    [7]

    Huang M Q, Turgut Z, Ma B M, Chen Z M, Lee D, Higgins A, Chen C H, Liu S, Chu S Y, Horwath J C, Fingers R T 2008 J. Appl. Phys. 103 07E134

    [8]

    Yan A, Gutfleisch O, Handstein A, Gemming T, Muller K H 2003 J. Appl. Phys. 93 7975

    [9]

    Gopalan R, Hono K, Yan A, Gutfleisch O 2009 Scri. Mater. 60 764

    [10]

    Xiong X Y, Ohkubo T, Koyama T, Ohashi K, Tawara K, Hono K 2004 Acta Mater. 52 737

    [11]

    Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz T 2006 Acta Mater. 54 997

    [12]

    Craik D J, Hill E 1974 Phys. Lett. 48 157

    [13]

    Liu J F, Hadjipanayis G C 1999 J. Magn. Magn. Mater. 195 620

    [14]

    Liu J F, Zhang Y, Dimitrov D, Hadjipanayis G C 1999 J. Appl. Phys. 85 2800

    [15]

    Liu S, Yang J, Doyle G, Potts G, Kuhl G 2000 J. Appl. Phys. 87 6728

    [16]

    Kronmüller H, Goll D 2002 Scri. Mater. 47 545

  • [1]

    Liu J F, Chui T, Dimitrov D, Hadjipanayis G C 1998 Appl. Phys. Lett. 73 3007

    [2]

    Streibl B, Fidler J, Schrefl T 2000 J. Appl. Phys. 87 4765

    [3]

    Gopalan R, Ohkubo T, Hono K 2006 Scri. Mater. 54 1345

    [4]

    Romero S A, de Campos M F, Rechenberg H R, Missell F P 2008 J. Magn. Magn. Mater. 320 e73

    [5]

    Liu J F, Ding Y, Zhang Y, Dimitar D, Zhang F, Hadjipanayis G C 1999 J. Appl. Phys. 85 5660

    [6]

    Rong C B, Zhang H W, Chen R J, Shen B G, He S L, Liu J P 2006 J. Phys. D: Appl. Phys. 39 437

    [7]

    Huang M Q, Turgut Z, Ma B M, Chen Z M, Lee D, Higgins A, Chen C H, Liu S, Chu S Y, Horwath J C, Fingers R T 2008 J. Appl. Phys. 103 07E134

    [8]

    Yan A, Gutfleisch O, Handstein A, Gemming T, Muller K H 2003 J. Appl. Phys. 93 7975

    [9]

    Gopalan R, Hono K, Yan A, Gutfleisch O 2009 Scri. Mater. 60 764

    [10]

    Xiong X Y, Ohkubo T, Koyama T, Ohashi K, Tawara K, Hono K 2004 Acta Mater. 52 737

    [11]

    Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T, Schultz T 2006 Acta Mater. 54 997

    [12]

    Craik D J, Hill E 1974 Phys. Lett. 48 157

    [13]

    Liu J F, Hadjipanayis G C 1999 J. Magn. Magn. Mater. 195 620

    [14]

    Liu J F, Zhang Y, Dimitrov D, Hadjipanayis G C 1999 J. Appl. Phys. 85 2800

    [15]

    Liu S, Yang J, Doyle G, Potts G, Kuhl G 2000 J. Appl. Phys. 87 6728

    [16]

    Kronmüller H, Goll D 2002 Scri. Mater. 47 545

计量
  • 文章访问数:  6328
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-11
  • 修回日期:  2012-02-26
  • 刊出日期:  2012-09-05

/

返回文章
返回