搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响

宋桂林 周晓辉 苏健 杨海刚 王天兴 常方高

引用本文:
Citation:

Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响

宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高

Effects of Gd and Co doping on the electrical and ferromagnetism properties of BiFeO3 ceramics

Song Gui-Lin, Zhou Xiao-Hui, Su Jian, Yang Hai-Gang, Wang Tian-Xing, Chang Fang-Gao
PDF
导出引用
  • 采用快速液相烧结法制备BiFeO3和Bi0.95Gd0.05Fe1-xCoxO3 (x= 0, 0.05, 0.1, 0.15, 0.2)陶瓷样品,研究Gd, Co共掺杂对BiFeO3微观结构, 介电性能和铁磁性的影响. X射线衍射谱表明:所有样品的主衍射峰与纯相BiFeO3相符合且 具有良好的晶体结构,随着Co3+掺杂量x的增大, Bi0.95Gd0.05Fe1-xCoxO3样品的主衍射峰(104)与(110)逐渐相互重叠, 当x大于0.1时, 样品呈现正方晶系结构; J-V特性显示Gd3+, Co3+共掺杂有效地降低BiFeO3陶瓷的漏导电流,其降低幅度为1-2个数量级; 当f=103 Hz时, Bi0.95Gd0.05Fe0.8Co0.2O3的介电常数是BiFeO3的6倍, 而Bi0.95Gd0.05Fe0.95Co0.05O3和 Bi0.95Gd0.05Fe0.85Co0.15O3样品的介电损耗最小,均为0.01.室温下, Bi0.95Gd0.05Fe1-xCoxO3样品磁性与BiFeO3相比显著增强. 在磁场为30 kOe的作用下,Bi0.95Gd0.05Fe1-xCoxO3 (x= 0, 0.05, 0.1, 0.15, 0.2)的剩余磁化强度Mr分别是BiFeO3的34, 60, 105, 103, 180倍.样品磁性增强的主要原因是Gd, Co掺杂使BiFeO3的晶格结构发生变化导致BiFeO3自身储存的磁性能被释放, Gd3+的4f电子与Fe3+或Co3+的3d电子自旋相互作用及样品中存在局域的 Fe-O-Co磁耦合三者共同作用的结果.
    Multiferroic Bi0.95Gd0.05Fe1-xCoxO3 (x= 0, 0.05, 0.1, 0.15, 0.2) ceramics were prepared by rapid liquid phase sintering method. We studied effect of Gd and Co doping on the structure, electrical and ferromagnetism properties of BiFeO3 ceramics. The structure and morphology of BiFeO3 ceramics are characterized by X-ray diffraction (XRD). The results show that all the peaks for Bi0.95Gd0.05Fe1-xCoxO3 (x= 0, 0.05, 0.1, 0.15, 0.2) samples can be indexed according to the crystal structure of pure BiFeO3. And X-ray diffraction analysis reveals a phase transition in Gd-Co codoped BiFeO3 ceramics when x is larger than 0.1.The current densities of all samples measured at room temperature are approximately three orders of magnitude lower than that of BFO ceramic, and the leakage current of the ceramics at room temperature exhibits two distinctive conduction behaviors: Ohmic conduction and space charge limited (SCL) conduction mechanism.For all the samples studied here, the dielectric constant and dielectric loss decrease with the increase of frequency in a range from 1 kHz to 1 MHz. The dielectric constants of Bi0.95Gd0.05Fe1-xCoxO3 (x= 0, 0.05, 0.1, 0.15,0.2) samples are nearly 1.9, 2.68, 3.85, 5.3, and 6 times larger than that of pure BiFeO3 (εr= 61.2) ceramic at 1 kHz, respectively. And the dielectric losses of Bi0.95Gd0.05Fe1-xCoxO3 samples become smaller than that of BFO ceramic.The magnetic measurements show that all the samples possess strong ferromagnetism at room temperature expect BiFeO3 and Bi0.95Gd0.05FeO3 which are weakly ferromagnetic. Under an external magnetic field of 30 kOe, the values of Mr of Bi0.95Gd0.05Fe1-xCoxO3 are 34, 60, 105, 103 and 180 times that of BiFeO3, respectively.
    • 基金项目: 国家自然科学基金(批准号: 60571063); 河南省重点科技攻关项目(批准号: 122102210191); 河南省教育厅自然科学研究计划(批准号: 2011A140014)和 河南师范大学青年基金(批准号: 2010qk02)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60571063), the Key Scientific and Technological Research Projects in Henan Province (Grant No. 122102210191), the Basic Research Program of Education Bureau of Henan Province, China (Grant No. 2011A140014), and the Scientific Research Foundation for Youth of Henan Normal University (Grant No. 2010qk02).
    [1]

    Nelson C T, Gao P, Jokisaari J R, Adamo C, Folkman C M, Eom C B, Schlom D G, Pan X Q 2011 Science 334 968

    [2]

    Kuibo Y, Mi L, Liu Y W, He C L, Zhu G F, Chen B, Lu W, Pan X Q, Li W R 2010 Appl. Phys. Lett. 97 0421012010

    [3]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 342(3) 63

    [4]

    Yang S Y, Martin L W, Byrnes S J, Conry T E, Basu S R, Paran D, Reichertz L, Ihlefeld J, Adamo C, Melville A, Chu Y H, Schlom D G, Ager J W, Ramesh R 2009 Appl. Phys. Lett. 95 062909

    [5]

    Yang H, Wang Y Q, Wang, Jia Q X 2010 Appl. Phys. Lett. 96 012909

    [6]

    Gary W P, Lane W M, Ying H C 2007 Appl. Phys. Lett. 90 072902

    [7]

    Freer R, Thrall M, Cernik R, Tuna F, Collison D 2010 J. Eur. Ceram. Soc. 30 727

    [8]

    Kawae T, Tsuda H, Morimoto A 2008 Appl. Phys. Express 1 051601

    [9]

    Wen Z, Shen X, Wu J X, Wu D Li A D, Yang B, Wang Z, Chen H Z, Wang J L 2010 Appl. Phys. Lett. 96 202904

    [10]

    Poonam U, Yadav K L 2008 Mat. Lett. 62 2858

    [11]

    Sen K, Thakur Sange, Singh K, Gautam A, Singh M 2011 Mat. Lett. 65 1963

    [12]

    Lee S U, Kim S S, Park M H, Kim J W, Jo H K, Kim W J 2007 Appl. Surf. Sci. 5(254) 1493

    [13]

    Won S K, Youn K J, Kee H K, Hong S H 2009 J. Mag. Mag. Mat. 321 3262

    [14]

    Yang K G, Zhang Y L, Yang S H, Wang B 2010 J. Appl. Phys. 107 124109

    [15]

    Zheng X H, Xu Q G, Wen Z, Lang X Z, Wu D, Qiu T, Xu M X 2010 J. Allo. Comp. 499 108

    [16]

    Puli V S, Kumar A, Panwar N, Panwar C, Katiyar R S 2011 J. Allo. Comp. 509 8223

    [17]

    Wang Y P, Zhou L, Zhang M F, Chen X Y, Liu J M, Liu Z G 2004 Appl. Phys. Lett. 84 1731

    [18]

    Kim W S, Jun Y K, Kim K H, Hong S H 2009 J. Mag. Mag. Mat. 321 3262

    [19]

    Kawae T, Terauchi Y, Tsuda H, Kumeda M, Morimoto A 2009 Appl. Phys. Lett. 94 112904

    [20]

    Chang F G, Song G L, Fang K, Wang Z K 2007 Acta. Phys. Sin. 56 6068 (in Chinese) [常方高, 宋桂林, 房坤, 王照奎 2007 物理学报 56 6068]

    [21]

    Chin F C, Jen P L, Jenn M W 2006 Appl. Phys. Lett. 88 242909

    [22]

    Jun Y K, Hong S H 2007 Solid State Commun. 144 329

    [23]

    Du Y, Cheng Z X, Dou S X, Wang X L 2010 Thin Solid Films 518(24) 5

    [24]

    Huang J Z, Wang Y, Lin Y H, Li M, Nan C W 2009 J. Appl. Phys. 106 063911

  • [1]

    Nelson C T, Gao P, Jokisaari J R, Adamo C, Folkman C M, Eom C B, Schlom D G, Pan X Q 2011 Science 334 968

    [2]

    Kuibo Y, Mi L, Liu Y W, He C L, Zhu G F, Chen B, Lu W, Pan X Q, Li W R 2010 Appl. Phys. Lett. 97 0421012010

    [3]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 342(3) 63

    [4]

    Yang S Y, Martin L W, Byrnes S J, Conry T E, Basu S R, Paran D, Reichertz L, Ihlefeld J, Adamo C, Melville A, Chu Y H, Schlom D G, Ager J W, Ramesh R 2009 Appl. Phys. Lett. 95 062909

    [5]

    Yang H, Wang Y Q, Wang, Jia Q X 2010 Appl. Phys. Lett. 96 012909

    [6]

    Gary W P, Lane W M, Ying H C 2007 Appl. Phys. Lett. 90 072902

    [7]

    Freer R, Thrall M, Cernik R, Tuna F, Collison D 2010 J. Eur. Ceram. Soc. 30 727

    [8]

    Kawae T, Tsuda H, Morimoto A 2008 Appl. Phys. Express 1 051601

    [9]

    Wen Z, Shen X, Wu J X, Wu D Li A D, Yang B, Wang Z, Chen H Z, Wang J L 2010 Appl. Phys. Lett. 96 202904

    [10]

    Poonam U, Yadav K L 2008 Mat. Lett. 62 2858

    [11]

    Sen K, Thakur Sange, Singh K, Gautam A, Singh M 2011 Mat. Lett. 65 1963

    [12]

    Lee S U, Kim S S, Park M H, Kim J W, Jo H K, Kim W J 2007 Appl. Surf. Sci. 5(254) 1493

    [13]

    Won S K, Youn K J, Kee H K, Hong S H 2009 J. Mag. Mag. Mat. 321 3262

    [14]

    Yang K G, Zhang Y L, Yang S H, Wang B 2010 J. Appl. Phys. 107 124109

    [15]

    Zheng X H, Xu Q G, Wen Z, Lang X Z, Wu D, Qiu T, Xu M X 2010 J. Allo. Comp. 499 108

    [16]

    Puli V S, Kumar A, Panwar N, Panwar C, Katiyar R S 2011 J. Allo. Comp. 509 8223

    [17]

    Wang Y P, Zhou L, Zhang M F, Chen X Y, Liu J M, Liu Z G 2004 Appl. Phys. Lett. 84 1731

    [18]

    Kim W S, Jun Y K, Kim K H, Hong S H 2009 J. Mag. Mag. Mat. 321 3262

    [19]

    Kawae T, Terauchi Y, Tsuda H, Kumeda M, Morimoto A 2009 Appl. Phys. Lett. 94 112904

    [20]

    Chang F G, Song G L, Fang K, Wang Z K 2007 Acta. Phys. Sin. 56 6068 (in Chinese) [常方高, 宋桂林, 房坤, 王照奎 2007 物理学报 56 6068]

    [21]

    Chin F C, Jen P L, Jenn M W 2006 Appl. Phys. Lett. 88 242909

    [22]

    Jun Y K, Hong S H 2007 Solid State Commun. 144 329

    [23]

    Du Y, Cheng Z X, Dou S X, Wang X L 2010 Thin Solid Films 518(24) 5

    [24]

    Huang J Z, Wang Y, Lin Y H, Li M, Nan C W 2009 J. Appl. Phys. 106 063911

  • [1] 褚欣博, 金钻明, 吴旭, 李婧楠, 沈阳, 王若愚, 季秉煜, 李章顺, 彭滟. 铁磁异质结的远红外脉冲辐射及其光热调控研究. 物理学报, 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [2] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [3] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响. 物理学报, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [4] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正. 物理学报, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [5] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变. 物理学报, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [6] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟. 物理学报, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [7] 朱洁, 苏垣昌, 潘靖, 封国林. 高斯型非均匀应力对铁磁薄膜磁化性质的影响. 物理学报, 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [8] 宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高. Dy, Co共掺杂对BiFeO3陶瓷磁特性和磁相变温度Tc的影响. 物理学报, 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [9] 王光建, 蒋成保. Sm(CobalFe0.1Cu0.1Zr0.033)6.9高温永磁合金的矫顽力. 物理学报, 2012, 61(18): 187503. doi: 10.7498/aps.61.187503
    [10] 邓娅, 赵国平, 薄鸟. 交换弹簧磁性多层膜的磁矩取向及磁滞回线的解析研究. 物理学报, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [11] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [12] 鲜承伟, 赵国平, 张庆香, 徐劲松. 垂直取向Nd2Fe14B/α-Fe磁性三层膜的磁化反转. 物理学报, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [13] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析. 物理学报, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [14] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [15] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算. 物理学报, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
    [16] 郑 鹉, 王艾玲, 姜宏伟, 周云松, 李 彤. Co-Pt-C颗粒膜的磁性. 物理学报, 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [17] 肖春涛, 曹先胜. La0.67Pb0.33MnO3的Preisach分析. 物理学报, 2004, 53(7): 2347-2351. doi: 10.7498/aps.53.2347
    [18] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [19] 王文虎, 李世亮, 陈兆甲, 闻海虎, 熊玉峰. Bi2Sr2CaCu2O8单晶中的反常尖锋效应. 物理学报, 2001, 50(12): 2466-2470. doi: 10.7498/aps.50.2466
    [20] 新材料室. 液相烧结SmCo5永磁体磁滞回线与温度的关系. 物理学报, 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
计量
  • 文章访问数:  4997
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-09
  • 修回日期:  2012-02-25
  • 刊出日期:  2012-09-05

/

返回文章
返回