搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于力磁耦合效应的铁磁材料修正磁化模型

罗旭 朱海燕 丁雅萍

引用本文:
Citation:

基于力磁耦合效应的铁磁材料修正磁化模型

罗旭, 朱海燕, 丁雅萍

A modified model of magneto-mechanical effect on magnetization in ferromagnetic materials

Luo Xu, Zhu Hai-Yan, Ding Ya-Ping
PDF
HTML
导出引用
  • Jiles-Atherton (J-A)模型和Zheng Xiao-Jing-Liu Xing-En (Z-L)模型在分析应力对铁磁材料磁化的影响方面应用十分广泛. 目前, J-A模型中的磁致伸缩应变与应力和磁化强度的关系式采用Jiles给出的经典拟合公式, 该拟合公式中磁化强度的二次项和四次项系数与应力均为线性关系, 不能准确描述铁磁材料磁致伸缩系数随应力、磁化强度的非线性变化规律; Z-L模型中磁致伸缩应变与应力和磁化强度的关系式采用了双曲正切函数tanh(x), 更好地描述了铁磁材料磁致伸缩应变和磁化强度随应力的非线性变化规律, 但Z-L模型却没有考虑Weiss分子场、钉扎效应的作用, 且由于采用了基于弹性能的接近定理, 只能描述弹性应力对磁化过程的影响. 针对上述问题, 本文结合Z-L模型中的非线性磁致伸缩应变关系式以及J-A模型中的磁滞理论, 考虑弹性应力、塑性变形对模型参数的影响, 建立了能够反映弹-塑性阶段应力与塑性变形对铁磁材料磁化曲线影响的修正磁化模型, 分析了弹性拉、压应力及塑性拉、压变形对磁化曲线、矫顽力和剩余磁化强度的影响规律. 通过与试验结果及原有模型的计算结果进行对比, 发现修正模型能够更好地反映单次磁化、循环磁化过程中应力、塑性变形对磁化曲线的影响规律, 理论预测结果与试验结果之间的相关系数均在0.98以上, 可为分析力磁耦合效应对铁磁材料磁化影响规律提供更准确的理论模型.
    The prevailing Jiles-Atherton (J-A) model and Zheng Xiao-Jing-Liu Xing-En (Z-L) model are extensively used in modeling the magneto-mechanical effect on magnetization in ferromagnetic materials. In the J-A model, a fitting formula of magnetostrictive strain interms of stress and magnetization is adopted to model the stress effect on magnetostriction. However, the fitting formula is not in good accordance with the experimental results obtained by Kuruzar and Culllity. In order to solve this problem, a transcendental function tanh(x) is appropriately selected to describe the nonlinear magnetostrictive strain in the Z-L model, and it is found that the general formula of magnetostrictive strain is more effective to describe the nonlinear relation of magnetostrictive strain with stress and magnetization. Then, the modified law proposed by Jiles and Li is adopted to modify the Z-L model by Shi Pengpeng to describe the hysteretic behavior; nevertheless, the effect of Weiss molecular field, pinning energy and plastic deformation on magnetization are not taken into account, and the modified Z-L model can only describe the elastic stress effect on magnetization. In order to solve these problems above, a modified magneto-mechanical model is established by combining the magnetostrictive constitutive relationships of Z-L model with the modified energy conservation equation of J-A model, as well as taking the effect of elastic stress and plastic strain on the model parameters into account simultaneously. It is found that the predictions of proposed model here are in better accordance with the initial magnetization curves given by Jiles and Atherton and the hysteresis loops obtained by Makar and Tanner under different stresses and plastic deformation than those calculated by the J-A model and Z-L model. The correlation coefficients between experimental data and theoretical results calculated by the modified model are all over 0.98, which indicates that the modified model here is more effective than the existing model. A detailed study also performed to reveal the effects of the elastic tensile and compressive stress and plastic tensile and compressive strain on hysteresis loops, coercivity and remanence. The proposed model reveals that the area of hysteresis loop and coercivity increase nonlinearly with the stress and plastic deformation increasing, while the remanence decreases significantly; the effects of compressive stress and compressive plastic deformation on magnetization characteristic parameters above are more significant than those of tensile stress and tensile plastic deformation, which is consistent with the experimental trend. The proposed model can be used to quantitatively analyze the magneto-mechanical effect on the magnetization of ferromagnetism.
      通信作者: 罗旭, 402585133@qq.com
    • 基金项目: 国家自然科学基金(批准号: 51874253)和国家自然科学基金青年科学基金(批准号: 51604232)资助的课题
      Corresponding author: Luo Xu, 402585133@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51874253) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51604232)
    [1]

    Aydin U, Rasilo P, Martin F, Belahcen A, Daniel L, Havisto A, Arkkio A 2019 J. Magn. Magn. Mater. 469 19Google Scholar

    [2]

    Shi P, Jin K, Zheng X J 2017 Int. J. Mech. Sci. 124−125 229

    [3]

    Wang Z D, Deng B, Yao K 2011 J. Appl. Phys. 109 083928Google Scholar

    [4]

    Roskosz M, Gawrilenko P 2008 NDT & E Int. 41 570

    [5]

    Sablik M J, Landgraf F J G, Magnabosco R, Fukuhara M, de Campos M F, Machado R, Missell F P 2006 J. Magn. Magn. Mater. 304 155Google Scholar

    [6]

    Sablik M J, Kwun H, Burkhardt G L, Jiles D C 1987 J. Appl. Phys. 61 3799Google Scholar

    [7]

    Sablik M J, Rubin S W, Riley L A, Jiles D C, Kaminski D A, Biner S B 1993 J. Appl. Phys. 74 480Google Scholar

    [8]

    Jiles D C 1995 J. Phys. D: Appl. Phys. 28 1537Google Scholar

    [9]

    Craik D J, Wood M J 1970 J. Phys. D: Appl. Phys. 3 1009Google Scholar

    [10]

    Jiles D C 1988 J. Phys. D: Appl. Phys 21 1196Google Scholar

    [11]

    任文坚, 孙金立, 陈曦, 王振, 任吉林 2013 机械工程学报 49 8Google Scholar

    Ren W J, Shu J L, Chen X, Wang Z, Ren J L 2013 J. Mech. Eng. 49 8Google Scholar

    [12]

    任吉林, 陈晨, 刘昌奎, 陈曦, 舒铭航 2008 航空材料学报 28 41Google Scholar

    Ren J L, Chen C, Liu C K, Chen X, Shu M H 2008 J. Aeronaut. Mater. 28 41Google Scholar

    [13]

    Makar J M, Tanner B K 1998 J. Magn. Magn. Mater. 184 193Google Scholar

    [14]

    Makar J M, Tanner B K 2000 J. Magn. Magn. Mater. 222 291Google Scholar

    [15]

    Jiles D C, Atherton D L 1984 J. Appl. Phys. 55 2115Google Scholar

    [16]

    Jiles D C, Atherton D L 1984 J. Phys. D: Appl. Phys. 17 2491

    [17]

    Sablik M J, Burkhardt G L, Kwun H, Jiles D C 1988 J. Appl. Phys. 63 3930Google Scholar

    [18]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113Google Scholar

    [19]

    Nouicer A, Nouicer E, Feliachi M 2015 J. Magn. Magn. Mater. 373 240Google Scholar

    [20]

    Nouicer A, Nouicer E, Mahtali M, Feliachi M 2013 J. Supercond. Nov. Magn. 26 1489Google Scholar

    [21]

    Abdelmadjid N, Elamine N, Mouloud F 2013 Int. J. Appl. Eletrom. 42 343Google Scholar

    [22]

    Li J W, Xu M Q 2011 J. Appl. Phys. 110 63918Google Scholar

    [23]

    Sablik M J 1997 IEEE Trans. Magn. 33 3958Google Scholar

    [24]

    Li L, Jiles D C 2003 IEEE Trans. Magn. 39 3037Google Scholar

    [25]

    Sablik M J, Chen Y, Jiles D C 2000 AIP Conf. Proc. 509 1565

    [26]

    Sablik M J, Stegemann D, Krys A 2001 J. Appl. Phys. 89 7254Google Scholar

    [27]

    Sablik M J 2001 J. Appl. Phys. 89 5610Google Scholar

    [28]

    Lo C C H, Kinser E, Jiles D C 2003 J. Appl. Phys. 93 6626Google Scholar

    [29]

    Lo C C H, Lee S J, Li L, Kerdus L C, Jiles D C 2002 IEEE Trans. Magn. 38 2418Google Scholar

    [30]

    Sablik M J, Yonamine T, Landgraf F J G 2004 IEEE Trans. Magn. 40 3219Google Scholar

    [31]

    Li J W, Xu M Q, Leng J C, Xu M X 2012 J. Appl. Phys. 111 063909Google Scholar

    [32]

    Liu Q Y, Luo X, Zhu H Y, Liu J X, Han Y W 2017 Chin. Phys. B 26 077502Google Scholar

    [33]

    刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋 2017 物理学报 66 107501Google Scholar

    Liu Q Y, Luo X, Zhu H Y, Han Y W, Liu J X 2017 Acta Phys. Sin. 66 107501Google Scholar

    [34]

    Zhou Y H, Zhou H M, Zheng X J, Qiang Y, Jing W 2009 J. Magn. Magn. Mater. 321 281Google Scholar

    [35]

    Zhou Y H, Zhou H M, Zheng X J 2008 J. Appl. Phys. 104 23907Google Scholar

    [36]

    Shi P P, Jin K, Zheng X J 2016 J. Appl. Phys. 119 145103Google Scholar

    [37]

    Shi P P, Zhang P C, Jin K, Chen Z M, Zheng X J 2018 J. Appl. Phys. 123 145102Google Scholar

    [38]

    Kurzar M E, Cullity B D 1971 Intern. J. Magnetism 1 323

    [39]

    Yamasaki T, Yamamoto S, Hirao M 1996 NDT & E Int. 29 263Google Scholar

    [40]

    Sablik M J, Geerts W J, Smith K, Gregory A, Moore C, Palmer D, Bandyopadhyay A, Landgraf F J G, Campos M F 2010 IEEE Trans. Magn. 46 491Google Scholar

    [41]

    Schneider C S, Cannell P Y, Watts K T 1992 IEEE Trans. Magn. 28 2626Google Scholar

  • 图 1  单次磁化条件下不同模型计算得到的${B_{\rm{e}}}$-$H$曲线对比 (a)修正模型计算结果; (b) J-A模型计算结果; (c) Z-L模型计算结果; (d)不同模型计算结果与试验结果相关系数对比

    Fig. 1.  Comparison of initial${B_{\rm{e}}}$-$H$curves calculated by different models: (a) Our theoretical model; (b) J-A model; (c) Z-L model; (d) correlation coefficients of different models

    图 2  不同应力条件下修正模型和J-A模型磁滞回线计算结果的对比 (a)含碳量为0.003%时修正模型计算结果; (b)含碳量为0.003%时J-A模型计算结果; (c)含碳量为0.15%时修正模型计算结果; (d)含碳量为0.15%时J-A模型计算结果

    Fig. 2.  Hysteresis loops predicated by modified model and J-A model under different loading stresses: (a) Our modified model for 0.003 wt% C sample; (b) J-A model for 0.003 wt% C sample; (c) our modified model for 0.15 wt% C sample; (d) J-A model for 0.15 wt% C sample

    图 3  不同残余塑性变形条件下修正模型和J-A模型磁滞回线计算结果的对比 (a)含碳量0.003%时修正模型计算结果; (b)含碳量0.003%时J-A模型计算结果; (c)含碳量0.15%时修正模型计算结果; (d)含碳量0.15%时J-A模型计算结果

    Fig. 3.  Hysteresis loops predicated by modified model and J-A model under different residual plastic deformation: (a) Our modified model for 0.003 wt% C sample; (b) J-A model for 0.003 wt% C sample; (c) our modified model for 0.15 wt% C sample; (d) J-A model for 0.15 wt% C sample

    图 4  弹性应力对磁滞回线、矫顽力及剩余磁感应强度的影响 (a)弹性拉应力对磁滞回线的影响; (b)弹性压应力对磁滞回线的影响; (c)弹性拉、压应力对矫顽力的影响; (d)弹性拉、压应力对剩余磁感应强度的影响

    Fig. 4.  Effects of elastic stress on hysteresis loops, coercivity and remanence: (a) Effect of elastic tensile stress on hysteresis loop; (b) effect of elastic compressive stress on hysteresis loop; (c) effect of elastic tensile and compressive stress on coercivity; (d) effect of elastic tensile and compressive stress on remanence

    图 5  塑性应变对磁滞回线、矫顽力及剩余磁化强度的影响 (a)拉伸塑性应变对磁滞回线的影响; (b)压缩塑性变形对磁滞回线的影响; (c)塑性变形对矫顽力的影响; (d)塑性变形对剩余磁感应强度的影响

    Fig. 5.  Effects of plastic deformation on hysteresis loops, coercivity and remanence: (a) Effect of plastic tensile deformation on hysteresis loop; (b) effect of plastic compressive deformation on hysteresis loop; (c) effect of plastic tensile and compressive deformation on coercivity; (d) effect of plastic tensile and compressive deformation on remanence

    表 1  不同模型的相关系数${R^2}$比较

    Table 1.  Correlation coefficients ${R^2}$ of initial magnetization curve predicated by different models.

    模型类型应力值/MPa
    –200–1000100200
    修正模型${R^2}$0.99040.99470.99730.98590.9724
    Z-L模型${R^2}$0.94210.92900.93330.93000.8956
    J-A模型${R^2}$0.62890.0394–0.02890.26880.6440
    下载: 导出CSV

    表 2  加载条件下不同模型计算得到的磁滞回线与试验曲线相关系数${R^2}$比较

    Table 2.  Correlation coefficients ${R^2}$ of hysteresis loops predicated by different models under loading condition.

    模型类型试件含碳量0.003 wt%试件含碳量0.15 wt%
    0 MPa33 MPa160 MPa0 MPa36 MPa182 MPa
    修正模型${R^2}$0.98450.98940.98980.98400.98080.9937
    J-A模型${R^2}$0.91330.91880.89840.94850.94960.9153
    下载: 导出CSV

    表 3  卸载条件下不同模型计算得到的磁滞回线与试验曲线相关系数${R^2}$比较

    Table 3.  Correlation coefficients ${R^2}$ of hysteresis loops predicated by different models under different residual plastic deformation.

    模型类型试件含碳量0.003 wt%试件含碳量0.153 wt%
    0 MPa160 MPa0 MPa182 MPa
    修正模型${R^2}$0.98450.99430.98400.9858
    J-A模型${R^2}$0.91330.98260.94850.9765
    下载: 导出CSV
  • [1]

    Aydin U, Rasilo P, Martin F, Belahcen A, Daniel L, Havisto A, Arkkio A 2019 J. Magn. Magn. Mater. 469 19Google Scholar

    [2]

    Shi P, Jin K, Zheng X J 2017 Int. J. Mech. Sci. 124−125 229

    [3]

    Wang Z D, Deng B, Yao K 2011 J. Appl. Phys. 109 083928Google Scholar

    [4]

    Roskosz M, Gawrilenko P 2008 NDT & E Int. 41 570

    [5]

    Sablik M J, Landgraf F J G, Magnabosco R, Fukuhara M, de Campos M F, Machado R, Missell F P 2006 J. Magn. Magn. Mater. 304 155Google Scholar

    [6]

    Sablik M J, Kwun H, Burkhardt G L, Jiles D C 1987 J. Appl. Phys. 61 3799Google Scholar

    [7]

    Sablik M J, Rubin S W, Riley L A, Jiles D C, Kaminski D A, Biner S B 1993 J. Appl. Phys. 74 480Google Scholar

    [8]

    Jiles D C 1995 J. Phys. D: Appl. Phys. 28 1537Google Scholar

    [9]

    Craik D J, Wood M J 1970 J. Phys. D: Appl. Phys. 3 1009Google Scholar

    [10]

    Jiles D C 1988 J. Phys. D: Appl. Phys 21 1196Google Scholar

    [11]

    任文坚, 孙金立, 陈曦, 王振, 任吉林 2013 机械工程学报 49 8Google Scholar

    Ren W J, Shu J L, Chen X, Wang Z, Ren J L 2013 J. Mech. Eng. 49 8Google Scholar

    [12]

    任吉林, 陈晨, 刘昌奎, 陈曦, 舒铭航 2008 航空材料学报 28 41Google Scholar

    Ren J L, Chen C, Liu C K, Chen X, Shu M H 2008 J. Aeronaut. Mater. 28 41Google Scholar

    [13]

    Makar J M, Tanner B K 1998 J. Magn. Magn. Mater. 184 193Google Scholar

    [14]

    Makar J M, Tanner B K 2000 J. Magn. Magn. Mater. 222 291Google Scholar

    [15]

    Jiles D C, Atherton D L 1984 J. Appl. Phys. 55 2115Google Scholar

    [16]

    Jiles D C, Atherton D L 1984 J. Phys. D: Appl. Phys. 17 2491

    [17]

    Sablik M J, Burkhardt G L, Kwun H, Jiles D C 1988 J. Appl. Phys. 63 3930Google Scholar

    [18]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113Google Scholar

    [19]

    Nouicer A, Nouicer E, Feliachi M 2015 J. Magn. Magn. Mater. 373 240Google Scholar

    [20]

    Nouicer A, Nouicer E, Mahtali M, Feliachi M 2013 J. Supercond. Nov. Magn. 26 1489Google Scholar

    [21]

    Abdelmadjid N, Elamine N, Mouloud F 2013 Int. J. Appl. Eletrom. 42 343Google Scholar

    [22]

    Li J W, Xu M Q 2011 J. Appl. Phys. 110 63918Google Scholar

    [23]

    Sablik M J 1997 IEEE Trans. Magn. 33 3958Google Scholar

    [24]

    Li L, Jiles D C 2003 IEEE Trans. Magn. 39 3037Google Scholar

    [25]

    Sablik M J, Chen Y, Jiles D C 2000 AIP Conf. Proc. 509 1565

    [26]

    Sablik M J, Stegemann D, Krys A 2001 J. Appl. Phys. 89 7254Google Scholar

    [27]

    Sablik M J 2001 J. Appl. Phys. 89 5610Google Scholar

    [28]

    Lo C C H, Kinser E, Jiles D C 2003 J. Appl. Phys. 93 6626Google Scholar

    [29]

    Lo C C H, Lee S J, Li L, Kerdus L C, Jiles D C 2002 IEEE Trans. Magn. 38 2418Google Scholar

    [30]

    Sablik M J, Yonamine T, Landgraf F J G 2004 IEEE Trans. Magn. 40 3219Google Scholar

    [31]

    Li J W, Xu M Q, Leng J C, Xu M X 2012 J. Appl. Phys. 111 063909Google Scholar

    [32]

    Liu Q Y, Luo X, Zhu H Y, Liu J X, Han Y W 2017 Chin. Phys. B 26 077502Google Scholar

    [33]

    刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋 2017 物理学报 66 107501Google Scholar

    Liu Q Y, Luo X, Zhu H Y, Han Y W, Liu J X 2017 Acta Phys. Sin. 66 107501Google Scholar

    [34]

    Zhou Y H, Zhou H M, Zheng X J, Qiang Y, Jing W 2009 J. Magn. Magn. Mater. 321 281Google Scholar

    [35]

    Zhou Y H, Zhou H M, Zheng X J 2008 J. Appl. Phys. 104 23907Google Scholar

    [36]

    Shi P P, Jin K, Zheng X J 2016 J. Appl. Phys. 119 145103Google Scholar

    [37]

    Shi P P, Zhang P C, Jin K, Chen Z M, Zheng X J 2018 J. Appl. Phys. 123 145102Google Scholar

    [38]

    Kurzar M E, Cullity B D 1971 Intern. J. Magnetism 1 323

    [39]

    Yamasaki T, Yamamoto S, Hirao M 1996 NDT & E Int. 29 263Google Scholar

    [40]

    Sablik M J, Geerts W J, Smith K, Gregory A, Moore C, Palmer D, Bandyopadhyay A, Landgraf F J G, Campos M F 2010 IEEE Trans. Magn. 46 491Google Scholar

    [41]

    Schneider C S, Cannell P Y, Watts K T 1992 IEEE Trans. Magn. 28 2626Google Scholar

  • [1] 褚欣博, 金钻明, 吴旭, 李婧楠, 沈阳, 王若愚, 季秉煜, 李章顺, 彭滟. 铁磁异质结的远红外脉冲辐射及其光热调控研究. 物理学报, 2023, 72(15): 157801. doi: 10.7498/aps.72.20230543
    [2] 张硕, 龙连春, 刘静毅, 杨洋. 缺陷对铁单质薄膜磁致伸缩与磁矩演化的影响. 物理学报, 2022, 71(1): 017502. doi: 10.7498/aps.71.20211177
    [3] 罗旭, 王丽红, 吕良, 曹书峰, 董学成, 赵建国. 基于面磁荷密度的金属磁记忆检测正演模型. 物理学报, 2022, 71(15): 154101. doi: 10.7498/aps.71.20220176
    [4] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211177
    [5] 时朋朋, 郝帅. 磁记忆检测的力磁耦合型磁偶极子理论及解析解. 物理学报, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [6] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响. 物理学报, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [7] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正. 物理学报, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [8] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变. 物理学报, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [9] 李正华, 李翔. L10-FePt合金单层磁性薄膜的微磁学模拟. 物理学报, 2014, 63(16): 167504. doi: 10.7498/aps.63.167504
    [10] 宋桂林, 罗艳萍, 苏健, 周晓辉, 常方高. Dy, Co共掺杂对BiFeO3陶瓷磁特性和磁相变温度Tc的影响. 物理学报, 2013, 62(9): 097502. doi: 10.7498/aps.62.097502
    [11] 朱洁, 苏垣昌, 潘靖, 封国林. 高斯型非均匀应力对铁磁薄膜磁化性质的影响. 物理学报, 2013, 62(16): 167503. doi: 10.7498/aps.62.167503
    [12] 章鹏, 刘琳, 陈伟民. 磁性应力监测中力磁耦合特征及关键影响因素分析. 物理学报, 2013, 62(17): 177501. doi: 10.7498/aps.62.177501
    [13] 宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高. Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响. 物理学报, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [14] 张昌盛, 马天宇, 严密. 离轴磁场退火后Tb0.3Dy0.7Fe1.95〈110〉取向晶体的磁致伸缩"跳跃"效应. 物理学报, 2011, 60(3): 037505. doi: 10.7498/aps.60.037505
    [15] 李川, 刘敬华, 陈立彪, 蒋成保, 徐惠彬. Fe81Ga19合金晶体生长取向与磁致伸缩性能. 物理学报, 2011, 60(9): 097505. doi: 10.7498/aps.60.097505
    [16] 王磊, 杨成韬, 解群眺, 叶井红. 双层纳米磁电薄膜模型及分析. 物理学报, 2009, 58(5): 3515-3519. doi: 10.7498/aps.58.3515
    [17] 郑小平, 张佩峰, 李发伸, 郝远. Tb0.3Dy0.6Pr0.1(Fe1-xAlx)1.95合金的磁性、磁致伸缩和穆斯堡尔谱研究. 物理学报, 2009, 58(8): 5768-5772. doi: 10.7498/aps.58.5768
    [18] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95合金的磁致伸缩、自旋重取向和穆斯堡尔谱研究. 物理学报, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [19] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [20] 刘国栋, 李养贤, 胡海宁, 曲静萍, 柳祝红, 代学芳, 张 铭, 崔玉亭, 陈京兰, 吴光恒. 甩带Fe85Ga15合金的巨磁致伸缩研究. 物理学报, 2004, 53(9): 3191-3195. doi: 10.7498/aps.53.3191
计量
  • 文章访问数:  10944
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-20
  • 修回日期:  2019-07-02
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回