搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁记忆检测的力磁耦合型磁偶极子理论及解析解

时朋朋 郝帅

引用本文:
Citation:

磁记忆检测的力磁耦合型磁偶极子理论及解析解

时朋朋, 郝帅

Analytical solution of magneto-mechanical magnetic dipole model for metal magnetic memory method

Shi Peng-Peng, Hao Shuai
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 磁偶极子理论在缺陷漏磁场解释中被成功广泛使用. 由于磁荷密度等参数不易定量, 磁偶极子理论在应用中常常进行归一化处理, 被认为不适用于对应力相关的磁记忆信号做量化分析. 本文通过建立力磁耦合型磁偶极子理论模型, 以适用于分析磁记忆检测中应力对磁信号的影响. 基于铁磁学理论确定应力和磁场联合作用下的等效场强度, 基于弱磁化状态的一阶近似, 获得了各向同性铁磁材料微弱环境磁场下的应力磁化解析解. 结合磁信号二维问题中矩形和V形磁荷分布假定, 建立了光滑与破坏试件表面磁信号、矩形和V形表面缺陷所诱导磁信号的力磁耦合型磁偶极子理论分析模型, 并获得其解析解. 基于力磁耦合型磁偶极子理论的解析解, 对拉伸实验中试件破坏前后的信号差异、矩形和V形表面缺陷诱导磁信号, 以及磁信号的影响因素和规律等进行了详细分析. 理论研究表明, 基于本文理论模型的解析解可实现对磁记忆检测中的一些基本实验现象和规律的解释.
    Magnetic dipole theory has been widely and successfully used to explain the leakage magnetic field signals. Because the model parameter such as magnetic dipole density is not easy to quantify, magnetic dipole theory often needs normalizing in application, which is considered to be unsuitable for quantitatively analyzing the magnetic memory signals with the stress effect. In this paper, the theoretical model of magneto-mechanical coupling magnetic dipole is established, which is suitable for analyzing the stress effect on magnetic signals in magnetic memory testing method. Based on the ferromagnetic theory, the equivalent field under the combined action of the applied load and the magnetic field is determined. And then, the magneto-mechanical analytical model is obtained for the isotropic ferromagnetic material under the weak magnetic field based on the first-order magnetization approximation in the weak magnetization state. Under the assumptions of rectangular and V-shaped magnetic charge distribution for the two-dimensional magnetic signal problem, the theoretical analytical models of the magnetic memory signals from the smooth and cracked specimens, and the analytical models of the magnetic memory signal induced by the rectangular and V-shaped surface defect are established. Based on the analytical solution of the proposed magneto-mechanical magnetic dipole theory, the difference in signal between before and after the failure of the specimen, the signal from the rectangular and V-shaped defect, and other influencing factors and laws of the magnetic signal are analyzed in detail. In particular, the influence of stress, environmental magnetic field, defect morphology and size, lift-off effect, specimen size and other factors on magnetic memory signals can be described based on the analytical solution of magneto-mechanical magnetic dipole models proposed in this paper. The proposed analytical model of magneto-mechanical magnetic dipole in this paper is simple and easy to use, and the present research shows that the proposed analytical solution in this paper can explain some basic experimental phenomena and laws in magnetic memory testing experiments. In addition, the precise magneto-mechanical coupling quantitative model combined with the finite element analysis method is still needed for accurately analyzing the magnetic memory signals in experiment.
      通信作者: 时朋朋, shipengpeng@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11802225)和陕西省自然科学基础研究计划(批准号: 2019JQ-261)资助的课题
      Corresponding author: Shi Peng-Peng, shipengpeng@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11802225) and the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2019JQ-261)
    [1]

    Dubov A A 1997 Met. Sci. Heat Treat. 39 401Google Scholar

    [2]

    Leng J C, Xu M Q, Li J W, et al. 2010 Chin. J. Mech. Eng. 23 532Google Scholar

    [3]

    Huang H H, Jiang S L, Yang C, et al. 2014 Nondestr. Test. Eval. 29 377Google Scholar

    [4]

    Minkov D, Lee J, Shoji T 2000 J. Magn. Magn. Mater. 217Google Scholar

    [5]

    时朋朋 2015 无损检测 37 1

    Shi P P 2015 Nondestr. Test. 37 1

    [6]

    Wang Z D, Deng B, Yao K 2011 J. Appl. Phys. 109 083928Google Scholar

    [7]

    Li J W, Xu M Q 2011 J. Appl. Phys. 110 063918Google Scholar

    [8]

    Shi P P 2020 J. Magn. Magn. Mater. 512 166980Google Scholar

    [9]

    Avakian A, Ricoeur A 2017 J. Appl. Phys. 121 053901Google Scholar

    [10]

    Shi P P, Bai P G, Chen H E, et al. 2020 J. Magn. Magn. Mater. 504 166669Google Scholar

    [11]

    Zhong L Q, Li L M, Chen X 2013 IEEE Trans. Magn. 49 1128Google Scholar

    [12]

    Shi P P, Jin K, Zheng X J 2016 J. Appl. Phys. 119 145103Google Scholar

    [13]

    Shi P P, Jin K, Zhang P C, et al. 2018 IEEE Trans. Magn. 54 6202011Google Scholar

    [14]

    Zhang P C, Shi P P, Jin K, et al. 2019 J. Appl. Phys. 125 233901Google Scholar

    [15]

    Shi P P, Zhang P C, Jin K, et al. 2018 J. Appl. Phys. 123 145102Google Scholar

    [16]

    Shi P P, Zheng X J 2016 Nondestr. Test. Eval. 31 45Google Scholar

    [17]

    Shi P P, Su S Q, Chen Z M 2020 J. Nondestr. Eval. 39Google Scholar

    [18]

    Zhong L Q, Li L L, Chen X 2010 Nondestr. Test. Eval 25 161Google Scholar

    [19]

    Shi P P 2020 J. Appl. Phys. 128 115102Google Scholar

    [20]

    Shi P P, Jin K, Zheng X J 2017 Int. J. Mech. Sci. 124–125 229Google Scholar

  • 图 1  拉伸实验中的试件破坏前后的磁荷分布 (a)破坏前磁荷分布; (b)破坏后磁荷分布

    Fig. 1.  Magnetic charge distribution before and after failure in tensile experiments: (a) Magnetic charge distribution before failure; (b) magnetic charge distribution after failure.

    图 2  拉伸实验中试件破坏前和后的磁信号差异 (a) L = 100 mm; (b) L = 1000 mm

    Fig. 2.  Difference of magnetic signals of the tensile specimen before and after failure: (a) L = 100 mm; (b) L = 1000 mm.

    图 3  应力和外磁场对磁信号的影响 (a)应力影响; (b)外磁场影响

    Fig. 3.  Effects of stress and external magnetic field on magnetic signals: (a) Stress effect; (b) effect of external magnetic field.

    图 4  两种典型表面缺陷的磁荷分布示意图 (a)矩形凹槽试件; (b) V形凹槽试件

    Fig. 4.  Schematic diagram of the magnetic charge distribution for two typical surface defects: (a) Rectangular groove defect specimen; (b) V-groove defect specimen.

    图 5  缺陷深度对不同形貌缺陷诱导磁记忆信号的影响 (a)矩形凹槽; (b) V形凹槽

    Fig. 5.  Effects of defect depth on magnetic signals induced by different shape defects: (a) Rectangular groove defect; (b) V-groove defect.

    图 6  缺陷长度对不同形貌缺陷诱导磁信号的影响 (a)矩形凹槽; (b) V形凹槽

    Fig. 6.  Effects of defect length on magnetic signals induced by different shape defects: (a) Rectangular groove defect; (b) V-groove defect.

    图 7  应力和外磁场对矩形凹槽缺陷诱导磁信号的影响 (a)应力影响; (b)外磁场影响

    Fig. 7.  Effects of stress and external magnetic field on magnetic signals induced by rectangular groove defects: (a) Stress effect; (b) effect of external magnetic field.

    图 8  提离效应对试件磁信号的影响 (a)光滑试件; (b)具有矩形凹槽缺陷的试件

    Fig. 8.  Effects of lift off on magnetic signals of specimen: (a) Smooth specimen; (b) specimen with rectangular groove defect.

    图 9  试件尺寸对矩形凹槽缺陷试件磁信号的影响 (a)试件长度; (b)试件厚度

    Fig. 9.  Effects of specimen size on magnetic signals with rectangular groove defect: (a) Effect of specimen length; (b) effect of specimen depth.

  • [1]

    Dubov A A 1997 Met. Sci. Heat Treat. 39 401Google Scholar

    [2]

    Leng J C, Xu M Q, Li J W, et al. 2010 Chin. J. Mech. Eng. 23 532Google Scholar

    [3]

    Huang H H, Jiang S L, Yang C, et al. 2014 Nondestr. Test. Eval. 29 377Google Scholar

    [4]

    Minkov D, Lee J, Shoji T 2000 J. Magn. Magn. Mater. 217Google Scholar

    [5]

    时朋朋 2015 无损检测 37 1

    Shi P P 2015 Nondestr. Test. 37 1

    [6]

    Wang Z D, Deng B, Yao K 2011 J. Appl. Phys. 109 083928Google Scholar

    [7]

    Li J W, Xu M Q 2011 J. Appl. Phys. 110 063918Google Scholar

    [8]

    Shi P P 2020 J. Magn. Magn. Mater. 512 166980Google Scholar

    [9]

    Avakian A, Ricoeur A 2017 J. Appl. Phys. 121 053901Google Scholar

    [10]

    Shi P P, Bai P G, Chen H E, et al. 2020 J. Magn. Magn. Mater. 504 166669Google Scholar

    [11]

    Zhong L Q, Li L M, Chen X 2013 IEEE Trans. Magn. 49 1128Google Scholar

    [12]

    Shi P P, Jin K, Zheng X J 2016 J. Appl. Phys. 119 145103Google Scholar

    [13]

    Shi P P, Jin K, Zhang P C, et al. 2018 IEEE Trans. Magn. 54 6202011Google Scholar

    [14]

    Zhang P C, Shi P P, Jin K, et al. 2019 J. Appl. Phys. 125 233901Google Scholar

    [15]

    Shi P P, Zhang P C, Jin K, et al. 2018 J. Appl. Phys. 123 145102Google Scholar

    [16]

    Shi P P, Zheng X J 2016 Nondestr. Test. Eval. 31 45Google Scholar

    [17]

    Shi P P, Su S Q, Chen Z M 2020 J. Nondestr. Eval. 39Google Scholar

    [18]

    Zhong L Q, Li L L, Chen X 2010 Nondestr. Test. Eval 25 161Google Scholar

    [19]

    Shi P P 2020 J. Appl. Phys. 128 115102Google Scholar

    [20]

    Shi P P, Jin K, Zheng X J 2017 Int. J. Mech. Sci. 124–125 229Google Scholar

  • [1] 王思远, 梁添寿, 时朋朋. 金属磁记忆应变诱导磁性变化的原子尺度作用机理. 物理学报, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [2] 罗旭, 王丽红, 吕良, 曹书峰, 董学成, 赵建国. 基于面磁荷密度的金属磁记忆检测正演模型. 物理学报, 2022, 71(15): 154101. doi: 10.7498/aps.71.20220176
    [3] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [4] 万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆. 空频复用光纤中四波混频过程的解析分析方法. 物理学报, 2019, 68(11): 114207. doi: 10.7498/aps.68.20182129
    [5] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [6] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [7] 刘清友, 罗旭, 朱海燕, 韩一维, 刘建勋. 基于Jiles-Atherton理论的铁磁材料塑性变形磁化模型修正. 物理学报, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [8] 王焕光, 吴迪, 饶中浩. 孤立系内热传导过程(火积)耗散的解析解. 物理学报, 2015, 64(24): 244401. doi: 10.7498/aps.64.244401
    [9] 杨理践, 刘斌, 高松巍, 陈立佳. 金属磁记忆效应的第一性原理计算与实验研究. 物理学报, 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [10] 章鹏, 刘琳, 陈伟民. 磁性应力监测中力磁耦合特征及关键影响因素分析. 物理学报, 2013, 62(17): 177501. doi: 10.7498/aps.62.177501
    [11] 杨一鸣, 屈绍波, 王甲富, 赵静波, 柏鹏, 李哲, 夏颂, 徐卓. 基于介质谐振器原理的左手材料设计. 物理学报, 2011, 60(7): 074201. doi: 10.7498/aps.60.074201
    [12] 莫嘉琪. 一类广义Canard系统的近似解析解. 物理学报, 2009, 58(2): 695-698. doi: 10.7498/aps.58.695
    [13] 厉江帆, 单树民, 杨建坤, 姜宗福. 失谐量子频率转换系统薛定谔方程的显式解析解. 物理学报, 2007, 56(10): 5597-5601. doi: 10.7498/aps.56.5597
    [14] 陈昌远, 陆法林, 孙东升. Hulthén势散射态的解析解. 物理学报, 2007, 56(11): 6204-6208. doi: 10.7498/aps.56.6204
    [15] 杨鹏飞. 一类带限定变换的二阶耦合线性微分方程组的解析解. 物理学报, 2006, 55(11): 5579-5584. doi: 10.7498/aps.55.5579
    [16] 谢元喜, 唐驾时. 对“求一类非线性偏微分方程解析解的一种简洁方法”一文的一点注记. 物理学报, 2005, 54(3): 1036-1038. doi: 10.7498/aps.54.1036
    [17] 蔡长英, 任中洲, 鞠国兴. 指数型变化有效质量的三维Schr?dinger方程的解析解. 物理学报, 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [18] 谢元喜, 唐驾时. 求一类非线性偏微分方程解析解的一种简洁方法. 物理学报, 2004, 53(9): 2828-2830. doi: 10.7498/aps.53.2828
    [19] 郑春龙, 张解放. (2+1)维Camassa-Holm方程的相似约化与解析解. 物理学报, 2002, 51(11): 2426-2430. doi: 10.7498/aps.51.2426
    [20] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算). 物理学报, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
计量
  • 文章访问数:  9754
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 修回日期:  2020-09-19
  • 上网日期:  2021-01-21
  • 刊出日期:  2021-02-05

/

返回文章
返回