-
锂-氧电池虽有超高的理论能量密度, 但实际应用仍面临氧化反应动力学缓慢、充电过电位高等严峻问题. 大多数应用于锂-氧电池的单原子催化剂主要是基于过渡金属不饱和配位的d轨道, 而稀土元素Sm有丰富的4f轨道电子. 最近研究表明Sm单原子催化剂在锂-硫电池中能提升多硫化物的转化, 并在全电池实验中实现超稳定的循环性能. 因此, 本研究设计并优化了17种Sm单原子催化剂SmNxCy (x + y = 4, 6), 通过稳定性和催化活性筛选出SmN3C3-1催化剂应用于锂-氧电池. 通过研究对Li2O2分子的催化氧化, 发现Li2O2分子氧化的速率决定步为第2步, 充电过电位为0.52 V. 机理分析表明SmN3C3-1催化剂的d-f-p轨道杂化消除了对Sm原子4f轨道的屏蔽, 促进了界面电荷转移, 从而增强了对Li2O2分子的催化氧化. 本工作为稀土单原子催化剂在锂-氧电池中的应用提供了新视角.Lithium-oxygen batteries (LOBs) are renowned for their ultrahigh theoretical energy densities. However, their practical applications are significantly limited by sluggish oxidation kinetics and elevated charge overpotentials. Most single-atom catalysts (SACs) utilized in LOBs are predominantly based on transition metals, which feature unsaturated d-orbital coordination. In contrast, the rare-earth element samarium (Sm) possesses a rich array of 4f-orbital electrons. Recent studies have demonstrated that Sm SACs can effectively enhance the conversion of polysulfides in lithium-sulfur batteries (LSBs) and achieve remarkable cycling stability in full-cell experiments. Inspired by the work, we systematically design and optimize 17 configurations of Sm SACs for LOBs by using first-principles calculations, which are denoted as SmNxCy (x + y = 4 or 6). Through comprehensive screening for stability and catalytic activity, we identify the SmN3C3-1 catalyst as an optimal candidate for LOBs. The catalytic mechanism of the SmN3C3-1 SAC over the oxygen evolution reaction of the Li2O2 molecule is investigated. The Gibbs free energy of the two-electron dissociation process indicates that the second step of the reaction is the rate-determining step (RDS). At the equilibrium potential, the charge overpotential is 0.52 V. Furthermore, mechanistic analysis reveals that the d-f-p orbital hybridization in SmN3C3-1 effectivelyreduces the shielding effect on the Sm 4f orbitals, facilitates interfacial charge transfer, and significantly improves the catalytic performance of the Li2O2 oxidation. This study provides novel insights into the potential of rare-earth-based SACs for improving the performance of LOBs.
-
Keywords:
- lithium-oxygen batteries /
- oxygen evolution reaction /
- Sm single-atom catalyst /
- first-principles calculations
-
图 1 优化得到的17种SmNxCy (x + y = 4, 6)催化剂的几何结构和相对能量, 对于异构体, 按能量由低到高排序, 棕色、银色和蓝色小球分别代表C, N和Sm原子
Fig. 1. Optimized structures of SmNxCy (x + y = 4, 6) catalysts and the relative energy, for the isomers, order them from lowest to highest energy, brown, silver and blue spheres represent C, N and Sm atoms, respectively.
图 4 (a) Li2O2分子在SmN3C3-1上吸附的几何结构的俯视图与侧视图, 绿色和红色小球分别代表Li原子和O原子; (b) SmN3C3-1吸附Li2O2分子的电荷密度差分图, 箭头表示电荷转移方向, 黄色与蓝色分别代表电荷积聚与消失; (c), (d) Li2O2分子吸附前后的投影态密度, 等值面设置为0.004 e/Å3
Fig. 4. (a) Top and side views of Li2O2 molecule adsorption on SmN3C3-1 (SmN3C3-1-Li2O2), green and red small balls represent Li and O atoms, respectively; (b) charge density difference of SmN3C3-1-Li2O2, arrow indicates the direction of charge transfer, yellow and blue represent charge accumulation and depletion, respectively; (c), (d) projected density of states of SmN3C3-1 and SmN3C3-1-Li2O2, the isosurface value is set to 0.004 e/Å3.
图 5 (a) Li2O2分子在SmN3C3-1上解离的吉布斯自由能; (b)在隐式溶剂四乙二醇二甲醚下Li2O2分子在SmN3C3-1上解离的吉布斯自由能; (c) Li2O2分子在SmN3C3-2上解离的吉布斯自由能
Fig. 5. (a), (b) Gibbs free energy profiles of Li2O2 molecule dissociation on the SmN3C3-1 catalyst without and with implicit solvent; (c) Gibbs free energy profiles of Li2O2 molecule dissociation on the SmN3C3-2 catalyst without implicit solvent.
图 6 (a) Sm 4f-5d轨道杂化示意图; (b) SmN3C3-1中Sm 5d轨道的5种分轨道的投影态密度; (c) SmN3C3-1中Sm 4f轨道的7种分轨道的投影态密度; (d) SmN3C3-1中N 2p轨道的3种分轨道的投影态密度
Fig. 6. (a) Scenario of Sm 4f-5d hybridization; (b) PDOS for Sm 5d in five orientations; (c) PDOS for Sm 4f in seven orientations; (d) PDOS for N 2p in three orientations of SmN3C3-1 catalyst.
-
[1] Kang J H, Lee J, Jung J W, Park J, Jang T, Kim H S, Nam J S, Lim H, Yoon K R, Ryu W H, Kim I D, Byon H R 2020 ACS Nano 14 14549
Google Scholar
[2] Chen K, Yang D Y, Huang G, Zhang X B 2021 Acc. Chem. Res. 54 632
Google Scholar
[3] Jenkins M, Dewar D, Lagnoni M, Yang S, Rees G J, Bertei A, Johnson L R, Gao X, Bruce P G 2024 Adv. Mater. 36 2405715
Google Scholar
[4] Shao Y Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang J G, Wang Y, Liu J 2012 Adv. Funct. Mater. 23 987
[5] Geng D S, Ding N, Hor T S A, Chien S W, Liu Z L, Wu D, Sun X L, Zong Y 2016 Adv. Energy Mater. 6 1502164
Google Scholar
[6] Guo X, Sun B, Su D W, Liu X X, Liu H, Wang Y, Wang G X 2017 Sci. Bull. 62 442
Google Scholar
[7] Wang C Y, Xie Z J, Zhou Z 2019 APL Mater. 7 040701
Google Scholar
[8] Dang C C, Mu Q, Xie X B, Sun X Q, Yang X Y, Zhang Y P, Maganti S, Huang M N, Jiang Q L, Seok I, Du W, Hou C X 2022 Adv. Compos. Hybrid Mater. 5 606
Google Scholar
[9] Liu Z J, Zhao Z W, Zhang W, Huang Y, Liu Y, Wu D L, Wang L, Chou S L 2021 InfoMat 4 e12260
[10] Kavakli C, Meini S, Harzer G, Tsiouvaras N, Piana M, Siebel A, Garsuch A, Gasteiger H A, Herranz J 2013 ChemCatChem 5 3358
Google Scholar
[11] Lim H D, Song H, Gwon H, Park K Y, Kim J, Bae Y, Kim H, Jung S K, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K 2013 Energy Environ. Sci. 6 3570
Google Scholar
[12] Higgins D, Zamani P, Yu A, Chen Z 2016 Energy Environ. Sci. 9 357
Google Scholar
[13] Zhang B W, Li C J, Yang G, Huang K, Wu J S, Li Z, Cao X, Peng D D, Hao S J, Huang Y Z 2018 ACS Appl. Mater. Interfaces 10 23807
Google Scholar
[14] Al-Naggar A H, Shinde N M, Kim J S, Mane R S 2023 Coord. Chem. Rev. 474 214864
Google Scholar
[15] Rahmati M, Huang B, Schofield L M, Fletcher T H, Woodfield B F, Hecker W C, Bartholomew C H, Argyle M D 2018 J. Catal. 362 118
Google Scholar
[16] Pandey S, Karakoti M, Bhardwaj D, Tatrari G, Sharma R, Pandey L, Lee M J, Sahoo N G 2023 Nanoscale Adv. 5 1492
Google Scholar
[17] Cheng N C, Zhang L, Doyle-Davis K, Sun X L 2019 Electrochem. Energy Rev. 2 539
Google Scholar
[18] 施辰阳, 傅督, 王娟, 吴西林, 陈建荣 2021 中国科学: 化学 51 1104
Google Scholar
Shi C Y, Fu D, Wang J, Wu X L, Chen J R 2021 Sci. Sin. Chim 51 1104
Google Scholar
[19] Pan C, El-khodary S, Wang S, Ling Q F, Hu X, Xu L J, Zhong S 2023 Fuel Process. Technol. 250 107879
Google Scholar
[20] Yang Q Q, Jiang Y F, Zhuo H Y, Mitchell E M, Yu Q 2023 Nano Energy 111 108404
Google Scholar
[21] Chang B S, Wu S L, Wang Y, Sun T L, Cheng Z 2022 Nanoscale Horiz. 7 1340
Google Scholar
[22] Lu S, Chavan S M, Yu Z X 2024 J. CO2 Util. 80 102690
[23] Qiao B T, Lin J, Wang A Q, Chen Y, Zhang T, Liu J Y 2015 Chin. J. Catal. 36 1505
Google Scholar
[24] Sun S H, Zhang G, Gauquelin N, Chen N, Zhou J G, Yang S L, Chen W F, Meng X B, Geng D S, Banis M N, Li R Y, Ye S Y, Knights S, Botton G A, Sham T K, Sun X L 2013 Sci. Rep. 3 1775
Google Scholar
[25] Han Z Y, Zhao S Y, Xiao J W, Zhong X W, Sheng J Z, Lv W, Zhang Q F, Zhou G M, Cheng H M 2021 Adv. Mater. 33 e2105947
Google Scholar
[26] Zhou J B, Liu X J, Zhu L Q, Zhou J, Guan Y, Chen L, Niu S W, Cai J Y, Sun D, Zhu Y C, Du J, Wang G M, Qian Y T 2018 Joule 2 2681
Google Scholar
[27] Chen L H, Ke Q, Lei X L 2025 J. Energy Storage 111 115433
Google Scholar
[28] 郭金秋, 杜亚平, 张洪波 2020 化学学报 78 625
Google Scholar
Guo J Q, Du Y P, Zhang H B 2020 Acta Chim. Sin. 78 625
Google Scholar
[29] Chai S S, Zhang W B, Yang J L, Zhang L, Theint M M, Zhang X L, Guo S B, Zhou X, Ma X J 2023 RSC Sustain. 1 38
Google Scholar
[30] Li M, Wang X, Liu K, Sun H M, Sun D M, Huang K, Tang Y W, Xing W, Li H, Fu G T 2023 Adv. Mater. 35 2302462
Google Scholar
[31] Wang X, Zhu Y, Li H, Lee J M, Tang Y W, Fu G T 2022 Small Methods 6 2200413
Google Scholar
[32] Wang X, Wang J W, Wang P, Li L C, Zhang X Y, Sun D M, Li Y F, Tang Y W, Wang Y, Fu G T 2022 Adv. Mater. 34 2206540
Google Scholar
[33] Zhou R, Ren Y, Li W, Guo M, Wang Y, Chang H, Zhao X, Hu W, Zhou G, Gu S 2024 Angew. Chem. Int. Ed 63 e202405417
Google Scholar
[34] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
Google Scholar
[35] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
Google Scholar
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
Google Scholar
[37] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
Google Scholar
[38] Froyen S 1989 Phys. Rev. B 39 3168
Google Scholar
[39] Grimme S 2006 J. Comput. Chem. 27 1787
Google Scholar
[40] Guo X Y, Gu J X, Lin S R, Zhang S L, Chen Z F, Huang S P 2020 J. Am. Chem. Soc. 142 5709
Google Scholar
[41] Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033
Google Scholar
[42] Li H, Chuai M Y, Xiao X, Jia Y Y, Chen B, Li C, Piao Z H, Lao Z J, Zhang M T, Gao R H, Zhang B K, Han Z Y, Yang J L, Zhou G M 2023 J. Am. Chem. Soc. 145 22516
Google Scholar
[43] Hu X L, Luo G, Zhao Q N, Wu D, Yang T X, Wen J, Wang R H, Xu C H, Hu N 2020 J. Am. Chem. Soc. 142 16776
Google Scholar
[44] Laoire C, Mukerjee S, Plichta E J, Hendrickson M A, Abraham K M 2011 J. Electrochem. Soc. 158 A302
Google Scholar
计量
- 文章访问数: 451
- PDF下载量: 12
- 被引次数: 0








下载: