搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究缺陷石墨烯负载Sm单原子催化剂对Li2O2分子氧化反应的催化机理

肖羽 柯强 雷雪玲

引用本文:
Citation:

第一性原理研究缺陷石墨烯负载Sm单原子催化剂对Li2O2分子氧化反应的催化机理

肖羽, 柯强, 雷雪玲

First-principles study on catalytic mechanism of Li2O2 molecule oxidation reaction over defective graphene- supported Sm single-atom catalysts*

XIAO Yu, KE Qiang, LEI Xueling
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 锂-氧电池虽有超高的理论能量密度, 但实际应用仍面临氧化反应动力学缓慢、充电过电位高等严峻问题. 大多数应用于锂-氧电池的单原子催化剂主要是基于过渡金属不饱和配位的d轨道, 而稀土元素Sm有丰富的4f轨道电子. 最近研究表明Sm单原子催化剂在锂-硫电池中能提升多硫化物的转化, 并在全电池实验中实现超稳定的循环性能. 因此, 本研究设计并优化了17种Sm单原子催化剂SmNxCy (x + y = 4, 6), 通过稳定性和催化活性筛选出SmN3C3-1催化剂应用于锂-氧电池. 通过研究对Li2O2分子的催化氧化, 发现Li2O2分子氧化的速率决定步为第2步, 充电过电位为0.52 V. 机理分析表明SmN3C3-1催化剂的d-f-p轨道杂化消除了对Sm原子4f轨道的屏蔽, 促进了界面电荷转移, 从而增强了对Li2O2分子的催化氧化. 本工作为稀土单原子催化剂在锂-氧电池中的应用提供了新视角.
    Lithium-oxygen batteries (LOBs) are renowned for their ultrahigh theoretical energy densities. However, their practical applications are significantly limited by sluggish oxidation kinetics and elevated charge overpotentials. Most single-atom catalysts (SACs) utilized in LOBs are predominantly based on transition metals, which feature unsaturated d-orbital coordination. In contrast, the rare-earth element samarium (Sm) possesses a rich array of 4f-orbital electrons. Recent studies have demonstrated that Sm SACs can effectively enhance the conversion of polysulfides in lithium-sulfur batteries (LSBs) and achieve remarkable cycling stability in full-cell experiments. Inspired by the work, we systematically design and optimize 17 configurations of Sm SACs for LOBs by using first-principles calculations, which are denoted as SmNxCy (x + y = 4 or 6). Through comprehensive screening for stability and catalytic activity, we identify the SmN3C3-1 catalyst as an optimal candidate for LOBs. The catalytic mechanism of the SmN3C3-1 SAC over the oxygen evolution reaction of the Li2O2 molecule is investigated. The Gibbs free energy of the two-electron dissociation process indicates that the second step of the reaction is the rate-determining step (RDS). At the equilibrium potential, the charge overpotential is 0.52 V. Furthermore, mechanistic analysis reveals that the d-f-p orbital hybridization in SmN3C3-1 effectivelyreduces the shielding effect on the Sm 4f orbitals, facilitates interfacial charge transfer, and significantly improves the catalytic performance of the Li2O2 oxidation. This study provides novel insights into the potential of rare-earth-based SACs for improving the performance of LOBs.
  • 图 1  优化得到的17种SmNxCy (x + y = 4, 6)催化剂的几何结构和相对能量, 对于异构体, 按能量由低到高排序, 棕色、银色和蓝色小球分别代表C, N和Sm原子

    Fig. 1.  Optimized structures of SmNxCy (x + y = 4, 6) catalysts and the relative energy, for the isomers, order them from lowest to highest energy, brown, silver and blue spheres represent C, N and Sm atoms, respectively.

    图 2  17种SmNxCy (x + y = 4, 6)催化剂的形成能与溶解势 (a) SmNxCy (x + y = 4)催化剂; (b) SmNxCy (x + y = 6)催化剂

    Fig. 2.  Formation energy versus solvation potential for SmNxCy (x + y = 4, 6) catalysts: (a) SmNxCy (x + y = 4) catalysts; (b) SmNxCy (x + y = 6) catalysts.

    图 3  (a)—(e) SmN4C2-1, SmNC5, SmN3C3-2, SmN2C4-3和SmN3C3-1的投影态密度(PDOS), 0 eV处为费米能级; (f) –1—1 eV能量窗口的PDOS积分

    Fig. 3.  (a)–(e) PDOS for SmN4C2-1, SmNC5, SmN3C3-2, SmN2C4-3 and SmN3C3-1, respectively, the Fermi level is at 0 eV; (f) the corresponding integrals in the –1–1 eV energy window.

    图 4  (a) Li2O2分子在SmN3C3-1上吸附的几何结构的俯视图与侧视图, 绿色和红色小球分别代表Li原子和O原子; (b) SmN3C3-1吸附Li2O2分子的电荷密度差分图, 箭头表示电荷转移方向, 黄色与蓝色分别代表电荷积聚与消失; (c), (d) Li2O2分子吸附前后的投影态密度, 等值面设置为0.004 e3

    Fig. 4.  (a) Top and side views of Li2O2 molecule adsorption on SmN3C3-1 (SmN3C3-1-Li2O2), green and red small balls represent Li and O atoms, respectively; (b) charge density difference of SmN3C3-1-Li2O2, arrow indicates the direction of charge transfer, yellow and blue represent charge accumulation and depletion, respectively; (c), (d) projected density of states of SmN3C3-1 and SmN3C3-1-Li2O2, the isosurface value is set to 0.004 e3.

    图 5  (a) Li2O2分子在SmN3C3-1上解离的吉布斯自由能; (b)在隐式溶剂四乙二醇二甲醚下Li2O2分子在SmN3C3-1上解离的吉布斯自由能; (c) Li2O2分子在SmN3C3-2上解离的吉布斯自由能

    Fig. 5.  (a), (b) Gibbs free energy profiles of Li2O2 molecule dissociation on the SmN3C3-1 catalyst without and with implicit solvent; (c) Gibbs free energy profiles of Li2O2 molecule dissociation on the SmN3C3-2 catalyst without implicit solvent.

    图 6  (a) Sm 4f-5d轨道杂化示意图; (b) SmN3C3-1中Sm 5d轨道的5种分轨道的投影态密度; (c) SmN3C3-1中Sm 4f轨道的7种分轨道的投影态密度; (d) SmN3C3-1中N 2p轨道的3种分轨道的投影态密度

    Fig. 6.  (a) Scenario of Sm 4f-5d hybridization; (b) PDOS for Sm 5d in five orientations; (c) PDOS for Sm 4f in seven orientations; (d) PDOS for N 2p in three orientations of SmN3C3-1 catalyst.

  • [1]

    Kang J H, Lee J, Jung J W, Park J, Jang T, Kim H S, Nam J S, Lim H, Yoon K R, Ryu W H, Kim I D, Byon H R 2020 ACS Nano 14 14549Google Scholar

    [2]

    Chen K, Yang D Y, Huang G, Zhang X B 2021 Acc. Chem. Res. 54 632Google Scholar

    [3]

    Jenkins M, Dewar D, Lagnoni M, Yang S, Rees G J, Bertei A, Johnson L R, Gao X, Bruce P G 2024 Adv. Mater. 36 2405715Google Scholar

    [4]

    Shao Y Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang J G, Wang Y, Liu J 2012 Adv. Funct. Mater. 23 987

    [5]

    Geng D S, Ding N, Hor T S A, Chien S W, Liu Z L, Wu D, Sun X L, Zong Y 2016 Adv. Energy Mater. 6 1502164Google Scholar

    [6]

    Guo X, Sun B, Su D W, Liu X X, Liu H, Wang Y, Wang G X 2017 Sci. Bull. 62 442Google Scholar

    [7]

    Wang C Y, Xie Z J, Zhou Z 2019 APL Mater. 7 040701Google Scholar

    [8]

    Dang C C, Mu Q, Xie X B, Sun X Q, Yang X Y, Zhang Y P, Maganti S, Huang M N, Jiang Q L, Seok I, Du W, Hou C X 2022 Adv. Compos. Hybrid Mater. 5 606Google Scholar

    [9]

    Liu Z J, Zhao Z W, Zhang W, Huang Y, Liu Y, Wu D L, Wang L, Chou S L 2021 InfoMat 4 e12260

    [10]

    Kavakli C, Meini S, Harzer G, Tsiouvaras N, Piana M, Siebel A, Garsuch A, Gasteiger H A, Herranz J 2013 ChemCatChem 5 3358Google Scholar

    [11]

    Lim H D, Song H, Gwon H, Park K Y, Kim J, Bae Y, Kim H, Jung S K, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K 2013 Energy Environ. Sci. 6 3570Google Scholar

    [12]

    Higgins D, Zamani P, Yu A, Chen Z 2016 Energy Environ. Sci. 9 357Google Scholar

    [13]

    Zhang B W, Li C J, Yang G, Huang K, Wu J S, Li Z, Cao X, Peng D D, Hao S J, Huang Y Z 2018 ACS Appl. Mater. Interfaces 10 23807Google Scholar

    [14]

    Al-Naggar A H, Shinde N M, Kim J S, Mane R S 2023 Coord. Chem. Rev. 474 214864Google Scholar

    [15]

    Rahmati M, Huang B, Schofield L M, Fletcher T H, Woodfield B F, Hecker W C, Bartholomew C H, Argyle M D 2018 J. Catal. 362 118Google Scholar

    [16]

    Pandey S, Karakoti M, Bhardwaj D, Tatrari G, Sharma R, Pandey L, Lee M J, Sahoo N G 2023 Nanoscale Adv. 5 1492Google Scholar

    [17]

    Cheng N C, Zhang L, Doyle-Davis K, Sun X L 2019 Electrochem. Energy Rev. 2 539Google Scholar

    [18]

    施辰阳, 傅督, 王娟, 吴西林, 陈建荣 2021 中国科学: 化学 51 1104Google Scholar

    Shi C Y, Fu D, Wang J, Wu X L, Chen J R 2021 Sci. Sin. Chim 51 1104Google Scholar

    [19]

    Pan C, El-khodary S, Wang S, Ling Q F, Hu X, Xu L J, Zhong S 2023 Fuel Process. Technol. 250 107879Google Scholar

    [20]

    Yang Q Q, Jiang Y F, Zhuo H Y, Mitchell E M, Yu Q 2023 Nano Energy 111 108404Google Scholar

    [21]

    Chang B S, Wu S L, Wang Y, Sun T L, Cheng Z 2022 Nanoscale Horiz. 7 1340Google Scholar

    [22]

    Lu S, Chavan S M, Yu Z X 2024 J. CO2 Util. 80 102690

    [23]

    Qiao B T, Lin J, Wang A Q, Chen Y, Zhang T, Liu J Y 2015 Chin. J. Catal. 36 1505Google Scholar

    [24]

    Sun S H, Zhang G, Gauquelin N, Chen N, Zhou J G, Yang S L, Chen W F, Meng X B, Geng D S, Banis M N, Li R Y, Ye S Y, Knights S, Botton G A, Sham T K, Sun X L 2013 Sci. Rep. 3 1775Google Scholar

    [25]

    Han Z Y, Zhao S Y, Xiao J W, Zhong X W, Sheng J Z, Lv W, Zhang Q F, Zhou G M, Cheng H M 2021 Adv. Mater. 33 e2105947Google Scholar

    [26]

    Zhou J B, Liu X J, Zhu L Q, Zhou J, Guan Y, Chen L, Niu S W, Cai J Y, Sun D, Zhu Y C, Du J, Wang G M, Qian Y T 2018 Joule 2 2681Google Scholar

    [27]

    Chen L H, Ke Q, Lei X L 2025 J. Energy Storage 111 115433Google Scholar

    [28]

    郭金秋, 杜亚平, 张洪波 2020 化学学报 78 625Google Scholar

    Guo J Q, Du Y P, Zhang H B 2020 Acta Chim. Sin. 78 625Google Scholar

    [29]

    Chai S S, Zhang W B, Yang J L, Zhang L, Theint M M, Zhang X L, Guo S B, Zhou X, Ma X J 2023 RSC Sustain. 1 38Google Scholar

    [30]

    Li M, Wang X, Liu K, Sun H M, Sun D M, Huang K, Tang Y W, Xing W, Li H, Fu G T 2023 Adv. Mater. 35 2302462Google Scholar

    [31]

    Wang X, Zhu Y, Li H, Lee J M, Tang Y W, Fu G T 2022 Small Methods 6 2200413Google Scholar

    [32]

    Wang X, Wang J W, Wang P, Li L C, Zhang X Y, Sun D M, Li Y F, Tang Y W, Wang Y, Fu G T 2022 Adv. Mater. 34 2206540Google Scholar

    [33]

    Zhou R, Ren Y, Li W, Guo M, Wang Y, Chang H, Zhao X, Hu W, Zhou G, Gu S 2024 Angew. Chem. Int. Ed 63 e202405417Google Scholar

    [34]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Froyen S 1989 Phys. Rev. B 39 3168Google Scholar

    [39]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [40]

    Guo X Y, Gu J X, Lin S R, Zhang S L, Chen Z F, Huang S P 2020 J. Am. Chem. Soc. 142 5709Google Scholar

    [41]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [42]

    Li H, Chuai M Y, Xiao X, Jia Y Y, Chen B, Li C, Piao Z H, Lao Z J, Zhang M T, Gao R H, Zhang B K, Han Z Y, Yang J L, Zhou G M 2023 J. Am. Chem. Soc. 145 22516Google Scholar

    [43]

    Hu X L, Luo G, Zhao Q N, Wu D, Yang T X, Wen J, Wang R H, Xu C H, Hu N 2020 J. Am. Chem. Soc. 142 16776Google Scholar

    [44]

    Laoire C, Mukerjee S, Plichta E J, Hendrickson M A, Abraham K M 2011 J. Electrochem. Soc. 158 A302Google Scholar

  • [1] 李祗烁, 曹欣睿, 吴顺情, 吴建洋, 文玉华, 朱梓忠. 单层Janus MoSSe在不同手性角单轴拉伸应变下力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250437
    [2] 黄俊刚, 方艺梅, 江银河, 郑凯, 陈凯轩, 程梅娟, 林秋宝. 硫掺杂氧化锌纳米线电子性质和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250495
    [3] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理. 物理学报, doi: 10.7498/aps.73.20240197
    [4] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, doi: 10.7498/aps.72.20222300
    [5] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20221544
    [6] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, doi: 10.7498/aps.72.20221630
    [7] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, doi: 10.7498/aps.71.20211631
    [8] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20211631
    [9] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, doi: 10.7498/aps.70.20201636
    [10] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20210268
    [11] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190503
    [12] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190509
    [13] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20180992
    [14] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.62.056105
    [15] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, doi: 10.7498/aps.62.246301
    [16] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, doi: 10.7498/aps.62.083102
    [17] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.2051
    [18] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, doi: 10.7498/aps.59.7880
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.438
    [20] 罗宇峰, 钟 澄, 张 莉, 严学俭, 李 劲, 蒋益明. 方块电阻法原位表征Cu薄膜氧化反应动力学规律. 物理学报, doi: 10.7498/aps.56.6722
计量
  • 文章访问数:  451
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-17
  • 修回日期:  2025-09-12
  • 上网日期:  2025-10-15

/

返回文章
返回