搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性三维非对称双锥五模超材料的能带结构及品质因数

蔡成欣 陈韶赓 王学梅 梁俊燕 王兆宏

引用本文:
Citation:

各向异性三维非对称双锥五模超材料的能带结构及品质因数

蔡成欣, 陈韶赓, 王学梅, 梁俊燕, 王兆宏

Phononic band structure and figure of merit of three-dimensional anisotropic asymmetric double-cone pentamode metamaterials

Cai Cheng-Xin, Chen Shao-Geng, Wang Xue-Mei, Liang Jun-Yan, Wang Zhao-Hong
PDF
HTML
导出引用
  • 五模超材料是一类可以解除剪切模量的人工固体微结构, 具有类似流体的性质, 在声波调控中有着潜在的应用. 声学变换作为声波调控的一种重要手段, 在超材料声学器件的设计中被广泛使用. 声学变换的引入会压缩均匀各项同性五模超材料. 因此, 需要研究各向异性对三维非对称双锥五模超材料带隙及品质因数的影响. 本文利用有限元方法, 对各项异性三维非对称双锥五模超材料的能带结构及品质因数进行了研究. 研究结果表明, 三维非对称双锥五模超材料单模区域的相对带宽随着各向异性的增大而减小, 第一带隙的相对带宽增大到123%, 品质因数增大到6.9倍. 本研究可为声学变换在三维非对称双锥五模超材料中的应用提供指导.
    Pentamode metamaterial (PM) is a kind of artificial microstructure extremum material with solid morphology and fluid properties proposed by Milton and Cherkaey. By decoupling the compression and the shear waves, the periodic structure is difficult to be compressed, but the shear deformation occurs easily. Theoretically, acoustic metamaterials consisting of such periodic arrangement of structural units can achieve complete matching with water. Therefore, the characteristics of adjustable modulus anisotropy, small stuffing rate and broadband endow the PMs with excellent acoustic control ability, which has attracted more attention of researchers. In this paper, the narrow-diameter intersection point P (0.25a, 0.25a, 0.25a) of an isotropic three-dimensional PM selected as the reference point in four different directions (X-axis, Y-axis, Z-axis and body diagonal). When the P-point moves, the farther the P-point is, the greater the degree of anisotropy is. The introduction of anisotropy will cause the structural bifurcation of the three-dimensional PM to change structural parameters, and the structural parameters are important factors affecting the band characteristics of the three-dimensional PM of Bragg scattering. In order to study the influence of anisotropy on the band structure and pentamode properties of three-dimensional asymmetric double-cone PMs, we use the finite element simulation software COMSOL to calculate the primitive-cell of three-dimensional anisotropic PMs under Bloch boundary conditions. By adjusting the position of P point, four different types of three-dimensional anisotropic asymmetric double-cone PMs are constructed. Since the anisotropy changes in different directions have different effects on the parameters of the asymmetric double-cone structure, the band characteristics and the pentamode characteristics will also receive different degrees of influence. In this paper, the relationship between the degree of anisotropy and the band gap characteristics, single-mode region and figure of merit (FOM) are given, and the result can provide guidance for the design of asymmetric double-cone PM acoustic device. Compared with the isotropic double-cone PMs, the relative bandwidth of the first band gap of the anisotropic double-cone PMs can be broadened to 123%, and the FOM can be increased to 6.9 times. Due to the introduction of anisotropy, Due to the introduction of anisotropy, the structure of three-dimensional asymmetric double-cone PMs are more complex, the demand for sample fabrication is further improved, and the stability of PMs also reduced. Therefore, PMs with high stability and easy to be fabricated still needs further research and exploration.
      通信作者: 蔡成欣, cxcai2018@haut.edu.cn
      Corresponding author: Cai Cheng-Xin, cxcai2018@haut.edu.cn
    [1]

    Milton G W, Cherkaev A V 1995 J. Eng. Mater. Technol. 117 483Google Scholar

    [2]

    Kadic M, Bückmann T, Stenger N, Thiel M, Wegener M 2012 Appl. Phys. Lett. 100 191901Google Scholar

    [3]

    陈毅, 刘晓宁, 向平, 胡更开 2016 力学进展 46 201609Google Scholar

    Chen Y, Liu X N, Xiang P, Hu G K 2016 Adv. Mech. 46 201609Google Scholar

    [4]

    王兆宏, 蔡成欣, 楚杨阳, 刘广顺 2017 光电工程 44 34Google Scholar

    Wang Z H, Cai C X, Chu Y Y, Liu G S 2017 Opto-Electron. Eng. 44 34Google Scholar

    [5]

    Milton G W, Briane M, Wills J R 2006 New J. Phys. 8 248Google Scholar

    [6]

    Norris A N 2008 Proc. R. Soc. A 464 2411Google Scholar

    [7]

    Scandrett L C, Boisvert J E, Howarth T R 2010 J. Acoust. Soc. Am. 127 2856Google Scholar

    [8]

    Scandrett L C, Boisvert J E, Howarth T R 2011 Wave Motion 48 505Google Scholar

    [9]

    Boisvert J E, Scandrett L C, Howarth T R 2016 J. Acoust. Soc. Am. 139 3404Google Scholar

    [10]

    Schittny R, Bückmann T, Kadic M, Wegener M 2013 Appl. Phys. Lett. 103 231905Google Scholar

    [11]

    Gokhale N H, Cipolla J L, Norris A N 2012 J. Acoust. Soc. Am. 132 4

    [12]

    Kadic M, Buckmann T, Schittny R, Gumbsch P, Wegener M 2014 Phys. Rev. Appl. 2 054007Google Scholar

    [13]

    Cai C X, Wang Z H, Li Q W, Xu Z, Tian X G 2015 J. Phys. D: Appl. Phys. 48 175103Google Scholar

    [14]

    Huang Y, Lu X G, Liang G Y, Xu Z 2016 Phys. Lett. A 380 1334Google Scholar

    [15]

    Wang G, Jin L, Zhang L, Xu Z 2017 AIP Adv. 7 025309Google Scholar

    [16]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906Google Scholar

    [17]

    Sun Z Y, Jia H, Chen Y, Wang Z, Yang J 2018 J. Acoust. Soc. Am. 143 1029Google Scholar

    [18]

    Chen Y, Liu X N, Hu G K 2015 Sci. Rep. 5 15745Google Scholar

    [19]

    Chen J G, Liu J H, Liu X Z 2018 AIP Adv. 8 085024Google Scholar

    [20]

    张向东, 陈虹, 王磊, 赵志高, 赵爱国 2015 物理学报 64 134303Google Scholar

    Zhang X D, Chen H, Wang L, Zhao Z G, Zhao A G 2015 Acta Phys. Sin. 64 134303Google Scholar

    [21]

    陆智淼, 蔡力, 温激鸿, 温熙森 2016 物理学报 65 174301Google Scholar

    Lu Z M, Cai L, Wen J H, Wen X S 2016 Acta Phys. Sin. 65 174301Google Scholar

    [22]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar

    [23]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001Google Scholar

    [24]

    Cai C X, Han C, Wu J F, Wang Z H, Zhang Q H 2019 J. Phys. D: Appl. Phys. 52 045601Google Scholar

    [25]

    Wang Z H, Cai C X, Li Q W, Li J, Xu Z 2016 J. Appl. Phys. 120 024903Google Scholar

    [26]

    Bückmann T, Schittny R, Thiel M, Kadic M, Milton G W, Wegener M 2014 New J. Phys. 16 033032Google Scholar

  • 图 1  (a)各向同性五模超材料晶胞与(b)−(e)各向异性五模超材料晶胞结构示意图

    Fig. 1.  The unit cell structure of isotropy (a) and (b)−(e) anisotropic pentamode materials.

    图 2  P点沿空间对角线方向偏移0.25倍对角线长度时的能带结构

    Fig. 2.  The band structure of pentamode material with ${O_{\rm{s}}}P/\sqrt 3 a = 0.25$.

    图 3  模型1的第一带隙与单模区域的(a)上下界频率; (b)相对带宽

    Fig. 3.  (a) The upper and lower edges and (b) relative bandwidth of the first phononic band gaps and single mode area of model 1.

    图 7  各向异性对非对称双锥五模超材料品质因数的影响

    Fig. 7.  The influence of anisotropy on the figure of merit of asymmetric double-cone pentamode materials.

    图 4  模型2的第一带隙与单模区域的(a)上下界频率; (b)相对带宽

    Fig. 4.  (a) The upper and lower edges and (b) relative bandwidth of the first phononic band gaps and single mode area of model 2.

    图 5  模型3的第一带隙与单模区域的(a)上下界频率; (b)相对带宽

    Fig. 5.  (a) The upper and lower edges and (b) relative bandwidth of the first phononic band gaps and single mode area of model 3.

    图 6  模型4的第一带隙与单模区域的(a)上下界频率; (b)相对带宽

    Fig. 6.  (a) The upper and lower edges and (b) relative bandwidth of the first phononic band gaps and single mode area of model 4.

  • [1]

    Milton G W, Cherkaev A V 1995 J. Eng. Mater. Technol. 117 483Google Scholar

    [2]

    Kadic M, Bückmann T, Stenger N, Thiel M, Wegener M 2012 Appl. Phys. Lett. 100 191901Google Scholar

    [3]

    陈毅, 刘晓宁, 向平, 胡更开 2016 力学进展 46 201609Google Scholar

    Chen Y, Liu X N, Xiang P, Hu G K 2016 Adv. Mech. 46 201609Google Scholar

    [4]

    王兆宏, 蔡成欣, 楚杨阳, 刘广顺 2017 光电工程 44 34Google Scholar

    Wang Z H, Cai C X, Chu Y Y, Liu G S 2017 Opto-Electron. Eng. 44 34Google Scholar

    [5]

    Milton G W, Briane M, Wills J R 2006 New J. Phys. 8 248Google Scholar

    [6]

    Norris A N 2008 Proc. R. Soc. A 464 2411Google Scholar

    [7]

    Scandrett L C, Boisvert J E, Howarth T R 2010 J. Acoust. Soc. Am. 127 2856Google Scholar

    [8]

    Scandrett L C, Boisvert J E, Howarth T R 2011 Wave Motion 48 505Google Scholar

    [9]

    Boisvert J E, Scandrett L C, Howarth T R 2016 J. Acoust. Soc. Am. 139 3404Google Scholar

    [10]

    Schittny R, Bückmann T, Kadic M, Wegener M 2013 Appl. Phys. Lett. 103 231905Google Scholar

    [11]

    Gokhale N H, Cipolla J L, Norris A N 2012 J. Acoust. Soc. Am. 132 4

    [12]

    Kadic M, Buckmann T, Schittny R, Gumbsch P, Wegener M 2014 Phys. Rev. Appl. 2 054007Google Scholar

    [13]

    Cai C X, Wang Z H, Li Q W, Xu Z, Tian X G 2015 J. Phys. D: Appl. Phys. 48 175103Google Scholar

    [14]

    Huang Y, Lu X G, Liang G Y, Xu Z 2016 Phys. Lett. A 380 1334Google Scholar

    [15]

    Wang G, Jin L, Zhang L, Xu Z 2017 AIP Adv. 7 025309Google Scholar

    [16]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906Google Scholar

    [17]

    Sun Z Y, Jia H, Chen Y, Wang Z, Yang J 2018 J. Acoust. Soc. Am. 143 1029Google Scholar

    [18]

    Chen Y, Liu X N, Hu G K 2015 Sci. Rep. 5 15745Google Scholar

    [19]

    Chen J G, Liu J H, Liu X Z 2018 AIP Adv. 8 085024Google Scholar

    [20]

    张向东, 陈虹, 王磊, 赵志高, 赵爱国 2015 物理学报 64 134303Google Scholar

    Zhang X D, Chen H, Wang L, Zhao Z G, Zhao A G 2015 Acta Phys. Sin. 64 134303Google Scholar

    [21]

    陆智淼, 蔡力, 温激鸿, 温熙森 2016 物理学报 65 174301Google Scholar

    Lu Z M, Cai L, Wen J H, Wen X S 2016 Acta Phys. Sin. 65 174301Google Scholar

    [22]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar

    [23]

    Chen H Y, Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001Google Scholar

    [24]

    Cai C X, Han C, Wu J F, Wang Z H, Zhang Q H 2019 J. Phys. D: Appl. Phys. 52 045601Google Scholar

    [25]

    Wang Z H, Cai C X, Li Q W, Li J, Xu Z 2016 J. Appl. Phys. 120 024903Google Scholar

    [26]

    Bückmann T, Schittny R, Thiel M, Kadic M, Milton G W, Wegener M 2014 New J. Phys. 16 033032Google Scholar

  • [1] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响. 物理学报, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [2] 钱黎明, 孙梦然, 郑改革. α相三氧化钼中各向异性双曲声子极化激元的耦合性质. 物理学报, 2023, 72(7): 077101. doi: 10.7498/aps.72.20222144
    [3] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [4] 范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布. 物理学报, 2022, 71(23): 234101. doi: 10.7498/aps.71.20221156
    [5] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [6] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [7] 宋顾周, 马继明, 王奎禄, 周鸣. 厚针孔射线成像品质因数的研究. 物理学报, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [8] 凌瑞良, 冯进, 冯金福. 三维各向异性耦合谐振子体系的量子化能谱与精确波函数. 物理学报, 2010, 59(12): 8348-8358. doi: 10.7498/aps.59.8348
    [9] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性. 物理学报, 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [10] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [11] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [12] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [13] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [14] 王 刚, 温激鸿, 刘耀宗, 郁殿龙, 温熙森. 大弹性常数差二维声子晶体带隙计算中的集中质量法. 物理学报, 2005, 54(3): 1247-1252. doi: 10.7498/aps.54.1247
    [15] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [16] 齐共金, 杨盛良, 白书欣, 赵 恂. 基于平面波算法的二维声子晶体带结构的研究. 物理学报, 2003, 52(3): 668-671. doi: 10.7498/aps.52.668
    [17] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法. 物理学报, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
    [18] 李安华, 董生智, 李卫. 烧结Sm2Co17型永磁材料的力学性能及断裂行为的各向异性. 物理学报, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
    [19] 庄飞, 何赛灵, 何江平, 冯尚申. 大带隙的二维各向异性椭圆介质柱光子晶体. 物理学报, 2002, 51(2): 355-361. doi: 10.7498/aps.51.355
    [20] 庄飞, 肖三水, 何江平, 何赛灵. 二维正方各向异性碲圆柱光子晶体完全禁带中缺陷模的FDTD计算分析和设计. 物理学报, 2002, 51(9): 2167-2172. doi: 10.7498/aps.51.2167
计量
  • 文章访问数:  8642
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-04-28
  • 上网日期:  2020-05-14
  • 刊出日期:  2020-07-05

/

返回文章
返回