搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响

李文秋 唐彦娜 刘雅琳 王刚

引用本文:
Citation:

电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响

李文秋, 唐彦娜, 刘雅琳, 王刚

Influence of electron temperature anisotropy on the m = 1 helicon mode power deposition characteristic

Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang
PDF
HTML
导出引用
  • 采用一般的径向密度非均匀分布假设, 借助温等离子体介电张量模型, 利用磁化等离子体中电磁波的一般色散关系, 在高密度峰值、低磁场、低气压典型参量条件下, 重点分析了电子温度各向异性对螺旋波m = 1角向模功率沉积特性的影响. 研究结果表明: 在典型螺旋波等离子体电子温度范围(3, 8) eV内, 电子有限拉莫尔半径效应应当予以考虑, 而离子有限拉莫尔半径效应可以忽略. 低磁场条件下$|n| > 1 $ 次回旋谐波对介电张量元素的贡献可以忽略. 碰撞阻尼在功率沉积中占据主导地位, 功率沉积在偏离等离子体柱中心轴的某一径向位置出现峰值, 随着轴向电子温度Te, z的增大, 功率沉积强度逐渐增强. 相比等离子体温度各向同性情形, 等离子体温度各向异性显著改变了螺旋波m = 1角向模的功率沉积特性, 电子温度各向异性因子χ = Te,⊥/Te, z的增大或减小均导致功率沉积强度发生剧烈改变.
    As a core phenomenon in helicon discharge, the plasma temperature anisotropy may play a crucial role in helicon wave power deposition. Under radially inhomogeneous plasma circumstances, by employing the warm plasma dielectric tensor model and considering the finite Larmor radius (FLR) effect and plasma temperature anisotropy effect, under the typical helicon discharge parameter conditions, the helicon wave and Trivelpiece-Gould (TG) wave mode coupling characteristic and influence of electron temperature anisotropy on the helicon wave power deposition induced by collisional and Landau damping mechanism are theoretically investigated. Detailed analysis shows that for typical helicon plasma electron temperature Te = 3 eV and low magnetic field B0 = 48 G, the electron FLR effect should be considered, while the ion FLR effect can be ignored due to its large inertia effect; compared with the $| n | < 2 $ cyclotron harmonics, the contribution of the $| n | > 1 $ harmonics in the calculation of plasma dielectric tensor elements can be ignored due to low magnetic field conditions. For the propagation constant, detailed investigation indicates that the phase constant has a maximum value at a certain radial position, near the same position mode coupling between helicon wave and TG wave happens. Full analysis shows that the power deposition of the m = 1 helicon mode peaks at a certain radial position and increases gradually with the increase of the axial electron temperature. Besides, compared with the Landau damping, the collisional damping plays a dominant role in the power deposition under current parameter conditions; importantly, the electron temperature anisotropy exerts a significant influence on the power deposition characteristic, both the increase and decrease of electron temperature anisotropy factor (χ = Te,/Te,z) can lead the power deposition intensity to change drastically. All these conclusions are very important for us to understand the discharge mechanism of helicon plasma.
      通信作者: 李文秋, beiste@163.com
    • 基金项目: 中国科学院空天信息创新研究院高功率微波源与技术重点实验室(批准号: E1HM130403)资助的课题.
      Corresponding author: Li Wen-Qiu, beiste@163.com
    • Funds: Project supported by the Key Laboratory of High Power Microwave Sources and Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, China (Grant No. E1HM130403).
    [1]

    Tynan G R, Burin M J, Holland C, et al. 2004 Plasma Phys. Controlled Fusion 46 A373Google Scholar

    [2]

    Windisch T, Grulke O, Klinger T 2006 Phys. Plasmas 13 122303Google Scholar

    [3]

    Grulke O, Ullrich S, Windisch T, et al. 2007 Plasma Phys. Controlled Fusion 49 B247Google Scholar

    [4]

    Aliev Y M, Krämer M 2011 Phys. Scr. 83 065504Google Scholar

    [5]

    Goyal R, Sharma R P, Scime E E 2015 Phys. Plasmas 22 022101Google Scholar

    [6]

    Marin J F C, Lau C L, Goulding R H, et al. 2021 Plasma Phys. Controlled Fusion 64 025005.Google Scholar

    [7]

    Breizman B N, Arefiev A V 2000 Phys. Rev. Lett. 84 3863.Google Scholar

    [8]

    Chen G, Arefiev A V, Bengtson R D, et al. 2006 Phys. Plasmas 13 123507Google Scholar

    [9]

    Arefiev A V, Breizman B N 2006 Phys. Plasmas 13 062107Google Scholar

    [10]

    Aliev Y M, Krämer M 2008 Phys. Plasmas 15 104502Google Scholar

    [11]

    Aliev Y M, Krämer M 2014 Phys. Plasmas 21 013508Google Scholar

    [12]

    Aliev Y M, Krämer M 2016 Phys. Plasmas 23 103505Google Scholar

    [13]

    Aliev Y M, Krämer M 2023 Phys. Plasmas 30 032102Google Scholar

    [14]

    成玉国, 程谋森, 王墨戈, 李小康 2014 物理学报 63 035203Google Scholar

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Acta Phys. Sin. 63 035203Google Scholar

    [15]

    赵高, 熊玉卿, 马超, 刘忠伟, 陈强 2014 物理学报 63 235202Google Scholar

    Zhao G, Xiong Y Q, Ma C, Liu Z W, Chen Q 2014 Acta Phys. Sin. 63 235202Google Scholar

    [16]

    Guo X M, Scharer J, Mouzouris Y, et al. 1999 Phys. Plasmas 6 3400Google Scholar

    [17]

    Correyero Plaza S, Navarro J, Ahedo E 2016 52nd AIAA/ SAE/ASEE Joint Propulsion Conference, Salt Lake City, July 25—27, 2016 p5035

    [18]

    Swanson D G 1989 Plasma Waves (New York: Academic Press) p155

    [19]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [20]

    Kamenski I V, Borg G G A 1998 Comput. Phys. Commun. 113 10Google Scholar

    [21]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [22]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: The Hilbert Transform of the Gaussian (New York: Academic Press) p1

    [23]

    Sakawa Y, Kunimatsu H, Kikuchi H, et al. 2003 Phys. Rev. Lett. 90 105001Google Scholar

    [24]

    Shamrai K P, Shinohara S 2001 Phys. Plasmas 8 4659Google Scholar

    [25]

    Loewenhardt P K, Blackwell B D, Boswell R W, et al. 1991 Phys. Rev. Lett. 67 2792Google Scholar

  • 图 1  螺旋波放电产生等离子体柱横向截面示意图

    Fig. 1.  Cross section of helicon wave discharge plasma column.

    图 2  碰撞阻尼频率与朗道阻尼频率随电子温度的变化

    Fig. 2.  Dependence of the collisional frequency and Landau frequency on the electron temperature.

    图 3  有限拉莫尔半径效应因子随轴向静磁场的变化

    Fig. 3.  Dependence of the FLR effects on the axial static magnetic field.

    图 4  |n|≤3次回旋谐波对应的色散函数宗量随电子温度的变化

    Fig. 4.  Dependence of the argument of the plasma dispersion function on electron temperature for the |n| ≤ 3 cyclotron harmonics.

    图 5  高斯型等离子体密度及电子-绝缘壁碰撞频率的径向分布

    Fig. 5.  Radial profile of the plasma density distribution and electron-wall collisional frequency.

    图 6  相位常数和衰减常数随归一化半径的变化特性

    Fig. 6.  Amplitude of phase and attenuation constants varies with normalized radial position.

    图 7  螺旋波和TG波的径向模式耦合特性

    Fig. 7.  Mode coupling characteristic of helicon and TG waves on the normalized radial position.

    图 8  归一化功率沉积Pabs/max<Pabs>在(r, Te, z)参量空间的分布 (a) n0 = 1×1013 cm–3; (b) n0 = 1.2×1013 cm–3

    Fig. 8.  Distribution of normalized power deposition Pabs/max<Pabs> in the (r, Te, z) parameter space: (a) n0 = 1×1013 cm–3; (b) n0 = 1.2×1013 cm–3.

    图 9  朗道阻尼(a)和碰撞阻尼(b)引起的功率沉积在(r, Te, z)参量空间的分布

    Fig. 9.  Landau damping (a) and collisional damping (b) induced power deposition in the (r, Te, z) parameter space.

    图 10  (二维)条件下归一化功率沉积Pabs, CD/max<Pabs, CD>在 (r, χ) 参量空间的分布 (a) ${B_0} = 32{\text{ G}}$; (b) ${B_0} = 40{\text{ G}}$; (c) ${B_0} = 48{\text{ G}}$; (d) ${B_0} = 48{\text{ G}}$

    Fig. 10.  Distribution of normalized power deposition Pabs, CD/max<Pabs, CD> in the (r, χ) parameter space (two dimensional): (a) ${B_0} = 32{\text{ G}}$; (b) ${B_0} = 40{\text{ G}}$; (c) ${B_0} = 48{\text{ G}}$; (d) ${B_0} = 48{\text{ G}}$.

  • [1]

    Tynan G R, Burin M J, Holland C, et al. 2004 Plasma Phys. Controlled Fusion 46 A373Google Scholar

    [2]

    Windisch T, Grulke O, Klinger T 2006 Phys. Plasmas 13 122303Google Scholar

    [3]

    Grulke O, Ullrich S, Windisch T, et al. 2007 Plasma Phys. Controlled Fusion 49 B247Google Scholar

    [4]

    Aliev Y M, Krämer M 2011 Phys. Scr. 83 065504Google Scholar

    [5]

    Goyal R, Sharma R P, Scime E E 2015 Phys. Plasmas 22 022101Google Scholar

    [6]

    Marin J F C, Lau C L, Goulding R H, et al. 2021 Plasma Phys. Controlled Fusion 64 025005.Google Scholar

    [7]

    Breizman B N, Arefiev A V 2000 Phys. Rev. Lett. 84 3863.Google Scholar

    [8]

    Chen G, Arefiev A V, Bengtson R D, et al. 2006 Phys. Plasmas 13 123507Google Scholar

    [9]

    Arefiev A V, Breizman B N 2006 Phys. Plasmas 13 062107Google Scholar

    [10]

    Aliev Y M, Krämer M 2008 Phys. Plasmas 15 104502Google Scholar

    [11]

    Aliev Y M, Krämer M 2014 Phys. Plasmas 21 013508Google Scholar

    [12]

    Aliev Y M, Krämer M 2016 Phys. Plasmas 23 103505Google Scholar

    [13]

    Aliev Y M, Krämer M 2023 Phys. Plasmas 30 032102Google Scholar

    [14]

    成玉国, 程谋森, 王墨戈, 李小康 2014 物理学报 63 035203Google Scholar

    Cheng Y G, Cheng M S, Wang M G, Li X K 2014 Acta Phys. Sin. 63 035203Google Scholar

    [15]

    赵高, 熊玉卿, 马超, 刘忠伟, 陈强 2014 物理学报 63 235202Google Scholar

    Zhao G, Xiong Y Q, Ma C, Liu Z W, Chen Q 2014 Acta Phys. Sin. 63 235202Google Scholar

    [16]

    Guo X M, Scharer J, Mouzouris Y, et al. 1999 Phys. Plasmas 6 3400Google Scholar

    [17]

    Correyero Plaza S, Navarro J, Ahedo E 2016 52nd AIAA/ SAE/ASEE Joint Propulsion Conference, Salt Lake City, July 25—27, 2016 p5035

    [18]

    Swanson D G 1989 Plasma Waves (New York: Academic Press) p155

    [19]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [20]

    Kamenski I V, Borg G G A 1998 Comput. Phys. Commun. 113 10Google Scholar

    [21]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [22]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: The Hilbert Transform of the Gaussian (New York: Academic Press) p1

    [23]

    Sakawa Y, Kunimatsu H, Kikuchi H, et al. 2003 Phys. Rev. Lett. 90 105001Google Scholar

    [24]

    Shamrai K P, Shinohara S 2001 Phys. Plasmas 8 4659Google Scholar

    [25]

    Loewenhardt P K, Blackwell B D, Boswell R W, et al. 1991 Phys. Rev. Lett. 67 2792Google Scholar

  • [1] 李文秋, 唐彦娜, 刘雅琳, 王刚. 电子温度各向异性对螺旋波等离子体中电磁模式的传播及功率沉积特性的影响. 物理学报, 2023, 72(5): 055202. doi: 10.7498/aps.72.20222048
    [2] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [3] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [4] 李文秋, 赵斌, 王刚, 相东. 螺旋波等离子体中螺旋波与Trivelpiece-Gould波模式耦合及线性能量沉积特性参量分析. 物理学报, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [5] 李文秋, 赵斌, 王刚. 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响. 物理学报, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [6] 平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华. 螺旋波等离子体原型实验装置中天线的优化设计与功率沉积. 物理学报, 2019, 68(20): 205201. doi: 10.7498/aps.68.20182107
    [7] 孙梅, 周士弘, 李整林. 基于矢量水听器的深海直达波区域声传播特性及其应用. 物理学报, 2016, 65(9): 094302. doi: 10.7498/aps.65.094302
    [8] 王丁, 张美根. 各向异性渗流条件下弹性波的传播特征. 物理学报, 2014, 63(6): 069101. doi: 10.7498/aps.63.069101
    [9] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究. 物理学报, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [10] 张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛. 各向异性特异材料波导中表面等离子体的共振性质. 物理学报, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [11] 侯小娟, 云国宏, 白宇浩, 白那日苏, 周文平. 量子自旋波本征值及易轴型各向异性对其的影响. 物理学报, 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [12] 孟繁义, 吴 群, 傅佳辉, 杨国辉. 各向异性超常媒质矩形波导的导波特性研究. 物理学报, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [13] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性. 物理学报, 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [15] 周建华, 刘虹遥, 罗海陆, 文双春. 各向异性超常材料中倒退波的传播研究. 物理学报, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [16] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [17] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [18] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法. 物理学报, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [19] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁化等离子体JEC-FDTD算法. 物理学报, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [20] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
计量
  • 文章访问数:  1466
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-06
  • 修回日期:  2024-01-05
  • 上网日期:  2024-01-16
  • 刊出日期:  2024-04-05

/

返回文章
返回