搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有非热电子和陷俘离子的复杂等离子体中非线性尘埃声波的传播特征

林麦麦 宋晨光 王明月 陈富艳

引用本文:
Citation:

含有非热电子和陷俘离子的复杂等离子体中非线性尘埃声波的传播特征

林麦麦, 宋晨光, 王明月, 陈富艳

Propagation characteristics of nonlinear dust acoustic solitary waves in complex plasma with nonthermal electrons and trapped ions

Lin Mai-Mai, Song Chen-Guang, Wang Ming-Yue, Chen Fu-Yan
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文研究了同时含有非热(nonthermal)电子和陷俘(trapped)离子分布的复杂等离子体系统中非线性尘埃声波的传播特征. 首先, 利用线性化方法推导得到非线性尘埃声波的色散关系. 接着, 借助Sagdeev势方法推导得到表征非线性尘埃声波运动的二维自治系统、Sagdeev势方程和Sagdeev势函数的具体表达式. 然后, 依据数值模拟的方法分析了多种系统因素对二维自治系统相图的重要影响. 结果表明: 含有nonthermal电子和trapped离子的复杂等离子体系统中同时存在线性周期波、非线性周期波和孤立波. 接下来, 通过讨论Sagdeev势函数随系统参数的变化规律发现: 该复杂等离子体系统中仅存在振幅大于零的压缩型孤立波. 最后, 探讨多种系统因素对非线性尘埃声孤波的振幅、宽度和波形等传播特征的重要影响. 结果显示: 马赫数、nonthermal电子和trapped离子以及尘埃颗粒未扰动的数密度、温度及荷电量等参数对该复杂等离子体系统中非线性尘埃声孤波的振幅、宽度和波形等传播特性均具有显著影响, 且该结果与Sagdeev势函数的分析结果保持一致.
    The propagation characteristics of nonlinear dust acoustic solitary waves in a complex plasma system with nonthermal electrons and trapped ions are investigate in this work. The nonlinear dispersion relation of dust acoustic waves is obtained by using the linear method, and the two-dimensional autonomous system governing the motion of nonlinear dust acoustic waves is derived by using the Sagdeev potential method. At the same time, the specific expression of the Sagdeev potential function is obtained based on the Sagdeev potential equation. The numerical simulations are used to analyze the phase portraits of the two-dimensional autonomous system, revealing the linear periodic wave orbits, nonlinear periodic wave orbits, and homoclinic orbits co-existing in the complex dusty plasma system with nonthermal electrons and trapped ions. Furthermore, from the variations of the Sagdeev potential function with different system parameters it follows that only the compressive solitary waves exist in this complex plasma system. The significant influences of various system parameters on the amplitude, width, and waveform of the nonlinear dust acoustic solitary wave in the complex plasma system are discussed in detail. The results demonstrate that the Mach number, the nonthermal electrons and trapped ions, undisturbed dust particle number density, temperature, and charge have important effects on the propagating characteristics of the nonlinear dust acoustic solitary waves in a complex plasma with nonthermal electrons and trapped ions.
      通信作者: 林麦麦, linmaimai1514@126.com
      Corresponding author: Lin Mai-Mai, linmaimai1514@126.com
    [1]

    Gill T S, Bains A S, Bedi C 2010 Phys. Plasmas. 17 013701Google Scholar

    [2]

    Zahed H, Emadi E 2016 Phys. Plasmas. 23 083706Google Scholar

    [3]

    Singh K, Kaur N, Saini N S 2017 Phys. Plasmas. 24 063703Google Scholar

    [4]

    Akhter T, Mannan A, Mamun A A 2013 Plasma. Phys. Rep. 39 548Google Scholar

    [5]

    Anowarm G M, Mamuna A 2008 Phys. Lett. 372 5896Google Scholar

    [6]

    Rasheed A, Tsintsadze N L, Murtaza G 2011 Phys. Plasmas. 18 112701Google Scholar

    [7]

    Rao N N, Shukla P K, Yu M Y 1990 Planet. Space. Sci. 38 543Google Scholar

    [8]

    Barkan A, Merlino R L, N D Angelo 1995 Phys. Plasmas 2 3563Google Scholar

    [9]

    Xie B S, He K F, Huang Z Q 1998 Chin. Phys. Lett. 15 892Google Scholar

    [10]

    Lin M M, Duan W S 2005 Commun. Theor. Phys. 44 719Google Scholar

    [11]

    Murad A, Zakir U, Haque Q 2019 Braz. J. Phys. 49 79Google Scholar

    [12]

    Sarmah B, Devi A, Sarma J 2019 InfoKara 8 115Google Scholar

    [13]

    Soni P K, Aravindakshan H, Kakad B, Kakad A 2021 Phys. Scr. 96 105604Google Scholar

    [14]

    Jahan S, Banik S, Chowdhury N A, Mannan A, Mamun A A 2022 Gases 2 22Google Scholar

    [15]

    林麦麦, 付颖捷, 宋秋影, 于腾萱, 文惠珊, 蒋蕾 2022 物理学报 71 095203Google Scholar

    Lin M M, Fu Y J, Song Q Y, Yu T X, Wen H S, Jiang L 2022 Acta Phys. Sin. 71 095203Google Scholar

    [16]

    林麦麦, 王明月, 蒋蕾 2023 物理学报 72 035201Google Scholar

    Lin M M, Wang M Y, Jiang L 2023 Acta Phys. Sin. 72 035201Google Scholar

    [17]

    Mamani C 2023 Braz. J. Phys. 53 110Google Scholar

    [18]

    Saha T, Chatterjee P 2009 Phys. Plasmas 16 013707Google Scholar

    [19]

    Mamun A A, Shukla P K 2009 Phys. Rev. E 80 037401Google Scholar

    [20]

    Selim M M 2016 Eur. Phys. J. Plus 131 93Google Scholar

    [21]

    Gill T S, Kaur H, Bansal S, Saini N S, Bala P 2007 Eur. Phys. J. D 41 151Google Scholar

    [22]

    Mamun A A, Alam M N, Azad A K 1998 Phys. Plasmas 5 1212Google Scholar

    [23]

    Mandal D, Lesur M, Gravier E, Sama J N, Guillevic A, Sarazin Y 2023 Plasma Phys. Controlled Fusion 65 055001Google Scholar

    [24]

    Kaniadakis G, Lavagno A, Quarati P 1996 Phys. Lett. B 369 308Google Scholar

    [25]

    El-Labany S K, El-Taibany W F, El-Abbasy O M 2007 Chaos, Solitons Fractals 33 813Google Scholar

    [26]

    Salam M A, Akbar M A, Ali M Z 2021 Results Phys. 26 104376Google Scholar

    [27]

    Kian R B, Mahdieh M H 2023 Fluid Dyn. Res. 55 35503Google Scholar

    [28]

    Taylor H A, Daniell R E, Hartle R E, Brinton H C, Bauer S J, Scarf F L 1981 Adv. Space Res. 1 247Google Scholar

    [29]

    Sabry R, Moslem W M, Shukla P K 2009 Phys. Plasmas 16 032302Google Scholar

    [30]

    Amour R, Tribeche M 2010 Plasma Phys. 17 063702Google Scholar

    [31]

    Haider M M, Ferdous T, Duha S S 2014 Cent. Eur. J. Phys. 12 701Google Scholar

    [32]

    Ghai Y, Saini S N 2017 Astrophys. Space Sci. 362 3Google Scholar

    [33]

    Annou K, Bahamida S, Annou R 2011 Pramana-J. Phys. 76 513Google Scholar

    [34]

    Mamun A A 1998 Phys. Scr. 57 258Google Scholar

    [35]

    Demiray H, Abdikian A 2019 Chaos, Solitons Fractals 121 50Google Scholar

    [36]

    Rasheed A, Murtaza G, Tsintsadze NL 2010 Phys. Rev. E 82 016403Google Scholar

    [37]

    El-Shamy E, Al-Chouikh R, El-Depsy A, Al-Wadie N 2016 Phys. Plasmas 23 122122Google Scholar

    [38]

    Cairns R A, Mamum A A, Bingham R, Boström R, Dendy R O, Nairn C M C, Shukla P K 1995 Geophys. Res. Lett. 22 2709Google Scholar

    [39]

    Misra A P, Wang Y L 2015 Commun. Nonlinear Sci. Numer. Simul. 22 1360Google Scholar

    [40]

    Pakzad H R, Tribeche M 2012 J. Fusion Energy 31 611Google Scholar

    [41]

    El-Labany S K, El-Taibany W F, El-Bedwehy N A, Zedan N A 2017 Plasmas Phys. Rep. 43 756Google Scholar

    [42]

    Nejoh Y 1992 IEEE Trans. Plasmas Sci. 20 80Google Scholar

    [43]

    Saha A, Tamang J 2019 Adv. Space Res. 63 1596Google Scholar

    [44]

    Saha A, Chatterjee P 2014 Astrophys. Space Sci. 350 631Google Scholar

  • 图 1  色散关系随不同参数的变化规律

    Fig. 1.  Variations of dispersion relation with different parameters.

    图 2  系统相图随马赫数M的变化 (a) M = 1.3; (b) M = 1.4; (c) M = 1.5

    Fig. 2.  Variations of system phase diagram with different M: (a) M = 1.3; (b) M = 1.4; (c) M = 1.5.

    图 3  系统相图随nonthermal电子数$ \alpha $的变化 (a) α = 0; (b) α = 0.4; (c) α = 0.8

    Fig. 3.  Variations of system phase diagram with different $ \alpha $: (a) α = 0; (b) α = 0.4; (c) α = 0.8.

    图 4  系统相图随trapped离子数b的变化 (a) b = 0.7; (b) b = 0.8; (c) b = 0.9

    Fig. 4.  Variations of system phase diagram with different b: (a) b = 0.7; (b) b = 0.8; (c) b = 0.9.

    图 5  系统相图随参数$ {\sigma _{\mathrm{i}}} $的变化 (a) σi = 0.4; (b) σi = 0.5; (c) σi = 0.6

    Fig. 5.  Variations of system phase diagram with different $ {\sigma _{\mathrm{i}}} $: (a) σi = 0.4; (b) σi = 0.5; (c) σi = 0.6.

    图 6  系统相图随参数$ {\sigma _{\mathrm{d}}} $的变化 (a) σd = 0. 02; (b) σd = 0.05; (c) σd = 0.08

    Fig. 6.  Variations of system phase diagram with different $ {\sigma _{\mathrm{d}}} $: (a) σd = 0.02; (b) σd = 0.05; (c) σd = 0.08.

    图 7  系统相图随参数$ \delta $的变化 (a) δ = 2; (b) δ = 3; (c) δ = 4

    Fig. 7.  Variations of system phase diagram with different $ \delta $: (a) δ = 2; (b) δ = 3; (c) δ = 4.

    图 8  Sagdeev势函数$ V\left( \phi \right) $随不同系统参数的变化规律 (a) α = 0.4, b = 0.8, σi = 0.5, σd = 0.02, δ = 2; (b) M = 1.3, b = 0.8, σi = 0.5, σd = 0.02, δ = 2; (c) M = 1.3, α = 0.4, σi = 0.5, σd = 0.02, δ = 2; (d) M = 1.3, α = 0.4, b = 0.8, σd = 0.02, δ = 2; (e) M = 1.3, α = 0.4, b = 0.8, σi = 0.5, δ = 2; (f) M = 1.3, α = 0.4, b = 0.8, σi = 0.5, σd = 0.02

    Fig. 8.  Variations of Sagdeev potential $ V\left( \phi \right) $ with different parameters: (a) α = 0.4, b = 0.8, σi = 0.5, σd = 0.02, δ = 2; (b) M = 1.3, b = 0.8, σi = 0.5, σd = 0.02, δ = 2; (c) M = 1.3, α = 0.4, σi = 0.5, σd = 0.02, δ = 2; (d) M = 1.3, α = 0.4, b = 0.8, σd = 0.02, δ = 2; (e) M = 1.3, α = 0.4, b = 0.8, σi = 0.5, δ = 2; (f) M = 1.3, α = 0.4, b = 0.8, σi = 0.5, σd = 0.02.

    图 9  孤立波$ \phi $的波形随不同参数的变化规律 (a) α = 0.4, b = 0.8, σi = 0.5, σd = 0.02, δ = 2; (b) M = 1.3, b = 0.8, σi = 0.5, σd = 0.02, δ = 2; (c) M = 1.3, α = 0.4, σi = 0.5, σd = 0.02, δ = 2; (d) M = 1.3, α = 0.4, b = 0.8, σd = 0.02, δ = 2; (e) M = 1.3, α = 0.4, b = 0.8, σi = 0.5, δ = 2; (f) M = 1.3, α = 0.4, b = 0.8, σi = 0.5, σd = 0.02

    Fig. 9.  Waveform variations of the solitary waves $ \phi $ with different parameters: (a) α = 0.4, b = 0.8, σi = 0.5, σd = 0.02, δ = 2; (b) M = 1.3, b = 0.8, σi = 0.5, σd = 0.02, δ = 2; (c) M = 1.3, α = 0.4, σi = 0.5, σd = 0.02, δ = 2; (d) M = 1.3, α = 0.4, b = 0.8, σd = 0.02, δ = 2; (e) M = 1.3, α = 0.4, b = 0.8, σi = 0.5, δ = 2; (f) M = 1.3, α = 0.4, b = 0.8, σi = 0.5, σd = 0.02.

  • [1]

    Gill T S, Bains A S, Bedi C 2010 Phys. Plasmas. 17 013701Google Scholar

    [2]

    Zahed H, Emadi E 2016 Phys. Plasmas. 23 083706Google Scholar

    [3]

    Singh K, Kaur N, Saini N S 2017 Phys. Plasmas. 24 063703Google Scholar

    [4]

    Akhter T, Mannan A, Mamun A A 2013 Plasma. Phys. Rep. 39 548Google Scholar

    [5]

    Anowarm G M, Mamuna A 2008 Phys. Lett. 372 5896Google Scholar

    [6]

    Rasheed A, Tsintsadze N L, Murtaza G 2011 Phys. Plasmas. 18 112701Google Scholar

    [7]

    Rao N N, Shukla P K, Yu M Y 1990 Planet. Space. Sci. 38 543Google Scholar

    [8]

    Barkan A, Merlino R L, N D Angelo 1995 Phys. Plasmas 2 3563Google Scholar

    [9]

    Xie B S, He K F, Huang Z Q 1998 Chin. Phys. Lett. 15 892Google Scholar

    [10]

    Lin M M, Duan W S 2005 Commun. Theor. Phys. 44 719Google Scholar

    [11]

    Murad A, Zakir U, Haque Q 2019 Braz. J. Phys. 49 79Google Scholar

    [12]

    Sarmah B, Devi A, Sarma J 2019 InfoKara 8 115Google Scholar

    [13]

    Soni P K, Aravindakshan H, Kakad B, Kakad A 2021 Phys. Scr. 96 105604Google Scholar

    [14]

    Jahan S, Banik S, Chowdhury N A, Mannan A, Mamun A A 2022 Gases 2 22Google Scholar

    [15]

    林麦麦, 付颖捷, 宋秋影, 于腾萱, 文惠珊, 蒋蕾 2022 物理学报 71 095203Google Scholar

    Lin M M, Fu Y J, Song Q Y, Yu T X, Wen H S, Jiang L 2022 Acta Phys. Sin. 71 095203Google Scholar

    [16]

    林麦麦, 王明月, 蒋蕾 2023 物理学报 72 035201Google Scholar

    Lin M M, Wang M Y, Jiang L 2023 Acta Phys. Sin. 72 035201Google Scholar

    [17]

    Mamani C 2023 Braz. J. Phys. 53 110Google Scholar

    [18]

    Saha T, Chatterjee P 2009 Phys. Plasmas 16 013707Google Scholar

    [19]

    Mamun A A, Shukla P K 2009 Phys. Rev. E 80 037401Google Scholar

    [20]

    Selim M M 2016 Eur. Phys. J. Plus 131 93Google Scholar

    [21]

    Gill T S, Kaur H, Bansal S, Saini N S, Bala P 2007 Eur. Phys. J. D 41 151Google Scholar

    [22]

    Mamun A A, Alam M N, Azad A K 1998 Phys. Plasmas 5 1212Google Scholar

    [23]

    Mandal D, Lesur M, Gravier E, Sama J N, Guillevic A, Sarazin Y 2023 Plasma Phys. Controlled Fusion 65 055001Google Scholar

    [24]

    Kaniadakis G, Lavagno A, Quarati P 1996 Phys. Lett. B 369 308Google Scholar

    [25]

    El-Labany S K, El-Taibany W F, El-Abbasy O M 2007 Chaos, Solitons Fractals 33 813Google Scholar

    [26]

    Salam M A, Akbar M A, Ali M Z 2021 Results Phys. 26 104376Google Scholar

    [27]

    Kian R B, Mahdieh M H 2023 Fluid Dyn. Res. 55 35503Google Scholar

    [28]

    Taylor H A, Daniell R E, Hartle R E, Brinton H C, Bauer S J, Scarf F L 1981 Adv. Space Res. 1 247Google Scholar

    [29]

    Sabry R, Moslem W M, Shukla P K 2009 Phys. Plasmas 16 032302Google Scholar

    [30]

    Amour R, Tribeche M 2010 Plasma Phys. 17 063702Google Scholar

    [31]

    Haider M M, Ferdous T, Duha S S 2014 Cent. Eur. J. Phys. 12 701Google Scholar

    [32]

    Ghai Y, Saini S N 2017 Astrophys. Space Sci. 362 3Google Scholar

    [33]

    Annou K, Bahamida S, Annou R 2011 Pramana-J. Phys. 76 513Google Scholar

    [34]

    Mamun A A 1998 Phys. Scr. 57 258Google Scholar

    [35]

    Demiray H, Abdikian A 2019 Chaos, Solitons Fractals 121 50Google Scholar

    [36]

    Rasheed A, Murtaza G, Tsintsadze NL 2010 Phys. Rev. E 82 016403Google Scholar

    [37]

    El-Shamy E, Al-Chouikh R, El-Depsy A, Al-Wadie N 2016 Phys. Plasmas 23 122122Google Scholar

    [38]

    Cairns R A, Mamum A A, Bingham R, Boström R, Dendy R O, Nairn C M C, Shukla P K 1995 Geophys. Res. Lett. 22 2709Google Scholar

    [39]

    Misra A P, Wang Y L 2015 Commun. Nonlinear Sci. Numer. Simul. 22 1360Google Scholar

    [40]

    Pakzad H R, Tribeche M 2012 J. Fusion Energy 31 611Google Scholar

    [41]

    El-Labany S K, El-Taibany W F, El-Bedwehy N A, Zedan N A 2017 Plasmas Phys. Rep. 43 756Google Scholar

    [42]

    Nejoh Y 1992 IEEE Trans. Plasmas Sci. 20 80Google Scholar

    [43]

    Saha A, Tamang J 2019 Adv. Space Res. 63 1596Google Scholar

    [44]

    Saha A, Chatterjee P 2014 Astrophys. Space Sci. 350 631Google Scholar

  • [1] 林麦麦, 王明月, 蒋蕾. 多组分尘埃等离子体中非线性尘埃声孤波的传播特征. 物理学报, 2023, 72(3): 035201. doi: 10.7498/aps.72.20221843
    [2] 林麦麦, 付颖捷, 宋秋影, 于腾萱, 文惠珊, 蒋蕾. 热尘埃等离子体中(2 + 1)维尘埃声孤波的传播特征. 物理学报, 2022, 71(9): 095203. doi: 10.7498/aps.71.20210902
    [3] 欧阳成, 姚静荪, 石兰芳, 莫嘉琪. 一类尘埃等离子体孤波解. 物理学报, 2014, 63(11): 110203. doi: 10.7498/aps.63.110203
    [4] 莫嘉琪. 一类非线性尘埃等离子体孤波解. 物理学报, 2011, 60(3): 030203. doi: 10.7498/aps.60.030203
    [5] 仲生仁. 尘埃等离子体中非线性波的叠加效应及稳定性问题. 物理学报, 2010, 59(4): 2178-2181. doi: 10.7498/aps.59.2178
    [6] 贺兵香, 何济洲. 双势垒InAs/InP纳米线异质结热电子制冷机. 物理学报, 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [7] 李百文, 田恩科. 强激光与等离子体相互作用中受激陷俘电子声波散射及相空间离子涡旋的形成. 物理学报, 2007, 56(8): 4749-4761. doi: 10.7498/aps.56.4749
    [8] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 超热电子角分布和能谱的实验研究. 物理学报, 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [9] 谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈 豪, 温天舒, 淳于书泰. 飞秒激光-固体靶相互作用中超热电子能量分布的实验研究. 物理学报, 2005, 54(1): 186-191. doi: 10.7498/aps.54.186
    [10] 彭晓昱, 张 杰, 金 展, 梁天骄, 仲佳勇, 武慧春, 刘运全, 王兆华, 陈正林, 盛政明, 李玉同, 魏志义. 超短脉冲激光与乙醇微滴相互作用中超热电子的双叶状角分布. 物理学报, 2004, 53(8): 2625-2632. doi: 10.7498/aps.53.2625
    [11] 徐桂琼, 李志斌. 构造非线性发展方程孤波解的混合指数方法. 物理学报, 2002, 51(5): 946-950. doi: 10.7498/aps.51.946
    [12] 陈正林, 张杰. 对超热电子诱生的磁场分布的估算. 物理学报, 2001, 50(4): 735-740. doi: 10.7498/aps.50.735
    [13] 吴衍青, 韩申生. 电子-离子碰撞对超热电子影响的PIC模拟计算. 物理学报, 2000, 49(5): 915-921. doi: 10.7498/aps.49.915
    [14] 陈正林, 张 杰. 对超热电子诱生的磁场分布的估算. 物理学报, 2000, 49(11): 2180-2185. doi: 10.7498/aps.49.2180
    [15] 黄朝松, 吴颖. 热电子等离子体低频不稳定性的非线性理论. 物理学报, 1990, 39(8): 61-68. doi: 10.7498/aps.39.61
    [16] 关维恕, 王恩耀, 程仕清, 段淑云, 王纪海, 顾彪, 尚振奎. 电子迥旋加热等离子体及热电子环特性的实验研究. 物理学报, 1989, 38(2): 228-235. doi: 10.7498/aps.38.228
    [17] 黄朝松, 吴广学, 肖诗莉. 热电子等离子体无碰撞漂移波的稳定性. 物理学报, 1989, 38(4): 629-636. doi: 10.7498/aps.38.629
    [18] 马锦秀, 徐至展. 双束“自陷”激光驱动的电子等离子体波的拍频激发. 物理学报, 1988, 37(5): 735-742. doi: 10.7498/aps.37.735
    [19] 黄朝松, 邱励俭, 任兆杏. 热电子对低频等离子体漂移波的稳定作用. 物理学报, 1988, 37(8): 1284-1290. doi: 10.7498/aps.37.1284
    [20] 黄朝松, 任兆杏, 邱励俭. 热电子等离子体的耗散漂移不稳定性. 物理学报, 1987, 36(9): 1112-1121. doi: 10.7498/aps.36.1112
计量
  • 文章访问数:  2083
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14
  • 修回日期:  2024-01-11
  • 上网日期:  2024-01-13
  • 刊出日期:  2024-04-05

/

返回文章
返回