-
基于里德伯原子的量子微波测量技术快速发展并受到广泛关注, 该技术已展现出探头尺寸与波长无关、宽频谱测量等显著优势, 光纤耦合原子气室探头是便携式量子微波测量系统的关键技术之一. 现有双端口光纤耦合原子气室探头的探测光输出与耦合光输入共用渐变折射率(graded index, GRIN)透镜及光纤的方式, 使得探测光传输效率仅为17%. 在此条件下, 需通过增大探测光输入功率以获得足够的透射光输出功率, 这使得电磁诱导透明(electromagnetically-induced transparency, EIT)光谱展宽至11 MHz, 测量灵敏度降低. 本文提出集成二向色镜的三端口光纤耦合原子气室探头, 在保证原子气室中探测光、耦合光重叠相向传输的条件下, 出射的探测光被分离至独立的GRIN透镜及输出光纤, 探测光传输效率为40.4%, EIT光谱半高宽被降低至6 MHz. 该探头被用于开展EIT光谱测量、基于空间混频技术的数字通信实验研究, 实验结果验证了该探头对数字通信信号的接收能力.The quantum microwave measurement technology based on Rydberg atoms has developed rapidly and received widespread attention. It has shown significant advantages such as probe size independent of wavelength and broad spectrum measurement. Fiber-coupled vapor cell probe is one of the key technologies for portable quantum microwave measurement systems. The existing two-port fiber-coupled probe shares the graded index (GRIN) lens and optical fibers for outputting detection light with inputting coupling light, which limits light transmission efficiency of the detection light to 17%. Under these conditions, the power of the inputting detection light must be increased to ensure sufficient power to output the detection light, causing the electromagnetically-induced transparency (EIT) spectrum to broaden to 11 MHz, ultimately resulting in reduced measurement sensitivity. In this work, we propose a three-port fiber-coupled atomic gas chamber probe with an integrated dichroic mirror. On condition that the detection light and coupling light are transmitted in opposite directions and overlap in the vapor cell, the outgoing detection light is separated into two beams; one goes to an individual GRIN lens and the other to the output fiber, and the detection light transmission efficiency is 40.4%, and the half-height width of the EIT spectrum is reduced to 6 MHz. The probe is used to measure the microwave electric field intensity and phase; its effectiveness is verified by its ability to receive QPSK, 16QAM digitally modulated signals.
-
Keywords:
- Rydberg atom /
- vapor cell /
- fiber /
- communication
[1] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar
[2] 付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar
Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio Sin. 37 279Google Scholar
[3] 黄巍, 梁振涛, 杜炎雄, 颜 辉, 朱诗亮 2015 物理学报 64 160702Google Scholar
Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar
[4] Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890Google Scholar
[5] Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar
[6] Wade C G, Šibalić N, de Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar
[7] Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456Google Scholar
[8] Anderson D A, Raithel G A, Paradis E G, Sapiro R E 2020 US Patent US10823775B2 [2020-11-3]
[9] Holloway C L, Simons M T, Haddab A H, Williams C J, Holloway M W 2019 AIP Adv. 9 065110Google Scholar
[10] Anderson D A, Sapiro R E, Raithel G 2020 IEEE Trans. Antennas Propag. 69 2455Google Scholar
[11] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar
[12] Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar
[13] Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar
[14] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar
[15] Šibalić N, Pritchard J D, Adams C S, Weatherill K J 2017 Computer Phys. Commun. 220 319Google Scholar
[16] Robinson A K, Artusio-Glimpse A B, Simons M T, Holloway C L 2021 Phys. Rev. A 103 023704Google Scholar
[17] Holloway C L, Simons M T, Gordon J A, Wilson P F, Cooke C M, Anderson D A, Raithel G 2017 IEEE Trans. Electro. Compa. 59 717Google Scholar
[18] Fan H, Kumar S, Sheng J, Shaffer J P, Holloway C L, Gordon J A 2015 Phys. Rev. Appl. 4 044015Google Scholar
[19] McKinley M D, Remley K A, Myslinski M, Kenney J S, Schreurs D, Nauwelaers B 2004 64th ARFTG Conference Orlando, December 3, 2004 pp45–52
[20] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar
-
图 7 当fLO = 9.945 GHz, fSIG = 9.9451 GHz时, 2047个符号中频信号星座图的测试结果 (a) QPSK (10 kb/s); (b) QPSK (50 kb/s); (c) 16 QAM (10 kb/s); (d) 16 QAM (50 kb/s)
Fig. 7. Experimental results of 2047 symbol stream for IF signal constellation diagram with fLO = 9.945 GHz, fSIG = 9.9451 GHz: (a) QPSK (10 kb/s); (b) QPSK (50 kb/s); (c) 16 QAM (10 kb/s); (d) 16 QAM (50 kb/s).
-
[1] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar
[2] 付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar
Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio Sin. 37 279Google Scholar
[3] 黄巍, 梁振涛, 杜炎雄, 颜 辉, 朱诗亮 2015 物理学报 64 160702Google Scholar
Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar
[4] Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890Google Scholar
[5] Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar
[6] Wade C G, Šibalić N, de Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar
[7] Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456Google Scholar
[8] Anderson D A, Raithel G A, Paradis E G, Sapiro R E 2020 US Patent US10823775B2 [2020-11-3]
[9] Holloway C L, Simons M T, Haddab A H, Williams C J, Holloway M W 2019 AIP Adv. 9 065110Google Scholar
[10] Anderson D A, Sapiro R E, Raithel G 2020 IEEE Trans. Antennas Propag. 69 2455Google Scholar
[11] Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar
[12] Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar
[13] Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar
[14] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar
[15] Šibalić N, Pritchard J D, Adams C S, Weatherill K J 2017 Computer Phys. Commun. 220 319Google Scholar
[16] Robinson A K, Artusio-Glimpse A B, Simons M T, Holloway C L 2021 Phys. Rev. A 103 023704Google Scholar
[17] Holloway C L, Simons M T, Gordon J A, Wilson P F, Cooke C M, Anderson D A, Raithel G 2017 IEEE Trans. Electro. Compa. 59 717Google Scholar
[18] Fan H, Kumar S, Sheng J, Shaffer J P, Holloway C L, Gordon J A 2015 Phys. Rev. Appl. 4 044015Google Scholar
[19] McKinley M D, Remley K A, Myslinski M, Kenney J S, Schreurs D, Nauwelaers B 2004 64th ARFTG Conference Orlando, December 3, 2004 pp45–52
[20] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar
计量
- 文章访问数: 4362
- PDF下载量: 134
- 被引次数: 0