-
工业园区有毒有害气体排放具有种类繁多、成分复杂、分布广泛等特点, 建立多组分、高精度气体监测技术体系是污染防控的基础. 黑体光谱辐射范围广, 可有效地降低吸收谱线相互干扰可能性, 是多组分气体同时检测的首选光源. 但其单波长能量低且稳定性欠佳导致难以实现高精度气体探测. 鉴于此, 本文提出光学增程和声学谐振双重增强模式联用, 设计了一种可用于多组分气体同时高精度检测光声光谱传感器. 应用两个相同T型增强光声池, 构建了双光路增强型差分光学/光声检测模式, 实验证明了差分光声模式具有更强的噪声抑制能力, 可于同波段强吸收背景下提取出微弱痕量目标气体吸收信息, 且双光路增强型信号较单光路模式提高了1.91倍. 进行多组分气体同时检测性能研究, 常温常压下CO2, C2H2和NH3检测精度的体积分数分别为7.25 × 10–7, 1.84 × 10–6和1.43 × 10–6, 比单光路光声模式提高了1个数量级. 对体积分数为0—3 × 10–3 的三种气体样品进行测试, 光声信号线性度高于0.995. 广谱双光路T型增强差分光声光谱技术补偿了黑体广谱检测方法灵敏度低的缺陷, 具有灵敏度高、选择性好、背景噪声抑制能力强的优势, 可为建立工业园区多组分毒害气体的高精度监测技术提供支持, 助力于我国“碳中和碳达峰”宏伟任务.The determination of toxic or harmful gases in industrial parks is a challenge to monitoring exhaust contaminants due to the features of complex compositions and ubiquity. Blackbody sources play an important role in simultaneously detecting the multiple gas species in the presence of cross-interfering absorption lines due to their effective ultra-wide wavelength range. Nevertheless, the problem of lower intensity per wavelength and less stability persists as an obstacle for highly sensitive trace gas detection. In this study, a dual optical path (DOP) enhanced differential photoacoustic and spectral detection mode is developed for simultaneously detecting the multiple toxic or harmful gas through augmenting the weak effective absorption signals and suppressing the spurious coherent background noise. Two identical T-type photoacoustic resonators are introduced to enable the differential mode. Neverthelss, the pure optical approach cannot distinguish the absorption characteristics of acetylene (C2H2) with volume fraction 5 × 10–5 even with the DOP enhancement, whereas emerging peaks in the differential photoacoustic (PA) mode reveal the capability of PA spectroscopy to suppress coherent noise. The results demonstrate that the differential PA signal is improved by 1.91 times that obtained by the DOP design. Methane (NH3), acetylene (C2H2) and carbon dioxide (CO2) are used to verify the performance of this DOP enhanced differential PA gas sensor, and the volume fraction of the sensitivity is found to be 7.25 × 10–7 for CO2, 1.84 × 10–6 for C2H2, and 1.43 × 10–6 for NH3 at standard temperature and pressure, which is an order of magnitude higher than the original single mode PA value. Linear PA amplitude responses ranging from 0 to 3 × 10–3 in volume fraction with respect to the three target gases are observed, and the correction coefficients are all greater than 0.995. The DOP enhanced differential PA detection mode compensates for the weakness of the limited sensitivity associated with broadband spectroscopic methods based on blackbody radiator. Thus, the broadband DOP enhanced differential photoacoustic modality is demonstrated to be an effective approach to simultaneous, highly sensitive and selective detection of multiple trace gases.
-
Keywords:
- dual optical path enhanced differential mode /
- photoacoustic spectroscopy /
- toxic or harmful gas /
- multiple trace gas detection
[1] Hyde B P, Carton O T, Toole P O 2003 Atmos. Environ. 37 55Google Scholar
[2] Gong Z F, Gao T L, Mei L, Chen K, Zhang B, Peng W, Yu Q X 2021 Photoacoustics 21 100216Google Scholar
[3] Li Y, Wang R Z, Tittel F K, Ma Y F 2020 Opt. Laser Eng. 132 106155Google Scholar
[4] Wilson A D 2012 Procedia 1 453
[5] Marriott P J, Haglund P, Ong R C Y 2003 Clin. Chim. Acta 328 1Google Scholar
[6] Berbegal C, Khomenko I, Russo P, Spano G, Fragasso M, Biasioli F, Capozzi V 2020 Fermentation 6 55Google Scholar
[7] Korablev O, Vandaele A C, Montmessin F, et al. 2019 Nature 568 517Google Scholar
[8] Tombez L, Zhang E J, Orcutt J S, Kamlapurkar S, Green W M J 2017 Optica 4 1322Google Scholar
[9] 孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺 2012 物理学报 61 140704Google Scholar
Sun Y W, Liu W Q, Wang S M, Huang S H, Zeng Y, Xie P H, Chen J, Wang Y P, Si F Q 2012 Acta Phys. Sin. 61 140704Google Scholar
[10] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律 2017 物理学报 66 074212Google Scholar
Miao Y P, Le W, Yang F, Lin Y C, Tan Y Z, He H L 2017 Acta Phys. Sin. 66 074212Google Scholar
[11] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 物理学报 61 060702Google Scholar
Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta Phys. Sin. 61 060702Google Scholar
[12] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏 2021 物理学报 70 170701
Yin X K, Dong L, Wu H P, Liu L X, Shao X P 2021 Acta Phys. Sin. 70 170701
[13] 马欲飞 2021 物理学报 70 160702Google Scholar
Ma Y F 2021 Acta Phys. Sin. 70 160702Google Scholar
[14] He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Lett. 44 1904Google Scholar
[15] Li S Z, Wu H P, C R Y, Sampaolo A, Patimisco P, Spagnolo V, Tittel F K, Dong L 2019 Opt. Express 27 35267Google Scholar
[16] Zhang B, Chen K, Chen Y W, et al. 2020 Opt. Express 28 6618Google Scholar
[17] Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuators, B 251 632Google Scholar
[18] Yin X K, Wu H P, Dong L, et al. 2019 Sens. Actuators, B 282 567Google Scholar
[19] Liu L X, Mandelis A, Huan H T, Michaelian K H 2017 Opt. Lett. 42 1424Google Scholar
[20] Liu L X, Mandelis A, Huan H T, Melnikov A 2016 Appl. Phys. B 122 268
[21] Liu L X, Huan H T, Li W, Mandelis A, Wang Y F, Zhang L, Zhang X S, Yin X K, Wu Y X, Xiao X P 2021 Photoacoustics 21 100228Google Scholar
[22] Liu L X, Huan H T, Mandelis A, Zhang L, Guo C F, Li W, Zhang X S, Yin X K, Shao X P, Wang D T, 2022 Opt. Laser Technol. 148 107695Google Scholar
-
-
[1] Hyde B P, Carton O T, Toole P O 2003 Atmos. Environ. 37 55Google Scholar
[2] Gong Z F, Gao T L, Mei L, Chen K, Zhang B, Peng W, Yu Q X 2021 Photoacoustics 21 100216Google Scholar
[3] Li Y, Wang R Z, Tittel F K, Ma Y F 2020 Opt. Laser Eng. 132 106155Google Scholar
[4] Wilson A D 2012 Procedia 1 453
[5] Marriott P J, Haglund P, Ong R C Y 2003 Clin. Chim. Acta 328 1Google Scholar
[6] Berbegal C, Khomenko I, Russo P, Spano G, Fragasso M, Biasioli F, Capozzi V 2020 Fermentation 6 55Google Scholar
[7] Korablev O, Vandaele A C, Montmessin F, et al. 2019 Nature 568 517Google Scholar
[8] Tombez L, Zhang E J, Orcutt J S, Kamlapurkar S, Green W M J 2017 Optica 4 1322Google Scholar
[9] 孙友文, 刘文清, 汪世美, 黄书华, 曾议, 谢品华, 陈军, 王亚萍, 司福祺 2012 物理学报 61 140704Google Scholar
Sun Y W, Liu W Q, Wang S M, Huang S H, Zeng Y, Xie P H, Chen J, Wang Y P, Si F Q 2012 Acta Phys. Sin. 61 140704Google Scholar
[10] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律 2017 物理学报 66 074212Google Scholar
Miao Y P, Le W, Yang F, Lin Y C, Tan Y Z, He H L 2017 Acta Phys. Sin. 66 074212Google Scholar
[11] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 物理学报 61 060702Google Scholar
Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta Phys. Sin. 61 060702Google Scholar
[12] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏 2021 物理学报 70 170701
Yin X K, Dong L, Wu H P, Liu L X, Shao X P 2021 Acta Phys. Sin. 70 170701
[13] 马欲飞 2021 物理学报 70 160702Google Scholar
Ma Y F 2021 Acta Phys. Sin. 70 160702Google Scholar
[14] He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Lett. 44 1904Google Scholar
[15] Li S Z, Wu H P, C R Y, Sampaolo A, Patimisco P, Spagnolo V, Tittel F K, Dong L 2019 Opt. Express 27 35267Google Scholar
[16] Zhang B, Chen K, Chen Y W, et al. 2020 Opt. Express 28 6618Google Scholar
[17] Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuators, B 251 632Google Scholar
[18] Yin X K, Wu H P, Dong L, et al. 2019 Sens. Actuators, B 282 567Google Scholar
[19] Liu L X, Mandelis A, Huan H T, Michaelian K H 2017 Opt. Lett. 42 1424Google Scholar
[20] Liu L X, Mandelis A, Huan H T, Melnikov A 2016 Appl. Phys. B 122 268
[21] Liu L X, Huan H T, Li W, Mandelis A, Wang Y F, Zhang L, Zhang X S, Yin X K, Wu Y X, Xiao X P 2021 Photoacoustics 21 100228Google Scholar
[22] Liu L X, Huan H T, Mandelis A, Zhang L, Guo C F, Li W, Zhang X S, Yin X K, Shao X P, Wang D T, 2022 Opt. Laser Technol. 148 107695Google Scholar
计量
- 文章访问数: 4819
- PDF下载量: 88
- 被引次数: 0