-
在405 nm处基于低功率蓝光二极管光声技术探测ppb量级NO2浓度系统, 获取了NO2有效吸收截面, 探讨了水蒸气等气体的测量干扰, 通过频率扫描拟合得到了1.35 kHz的谐振频率. 采用内部抛光的铝制圆柱空腔作为光声谐振腔(内径为8 mm, 长为120 mm), 系统优化了腔体、窗片和电源等影响因素, 分析了降低本底噪声、提高信噪比的方法, 噪声信号可降至0.02
$\text{μV}$ . 设计了两级缓冲结构, 显著抑制了流量噪声的影响, 提高了系统的稳定性. 系统的标定梯度曲线经过线性拟合后的斜率为0.016$\text{μV/ppb}$ , R2为0.998, 在60 s平均时间下, 系统NO2探测限为3.67 ppb(3$\sigma$ ). 为了证实系统的测量结果, 将其与二极管激光腔衰荡光谱系统同步对比测量大气NO2浓度, 二者线性拟合后的斜率为0.94 ± 0.009, 截距为1.89 ± 0.18, 相关系数为0.87, 一致性较好. 实验结果表明, 该系统实现了ppb量级NO2浓度的低成本在线探测, 可用于NO2浓度外场的实时检测.Photo-acoustic technology based on a low power blue diode laser for measuring the ppb level NO2 is presented in this paper. A low-cost NO2 measurement system based on traditional photo-acoustic technology is established. The 405 nm blue diode laser with an external modulation is used as a light source. The central wavelength of the laser is 403.56 nm, the half-peak full width is 0.84 nm, and the power is 65.3 mW. The effective absorption cross section of NO2 is obtained, and the interference of the water vapor and other trace gasisinvestigated. The resonant frequency is tested to be 1.35 kHz by frequency scanning fitting. An internally polished and coated poly tetra fluoroethylene aluminum cylindrical cavity is used as a photo-acoustic resonator (the inner diameter is 8 mm and the length is 120 mm). The influence factors caused by cavity parameters, optical windows and power supply are studied. The system is optimized to reduce background noise and improve signal-to-noise ratio. Then the noise signal is dropped to 0.02${\text{μV}}$ . An additional buffer chamber is integrated on the original buffer chamber to form a two-level buffer. The two-stage buffer structure significantly suppresses the effects of airflow noise and improves the system stability. The slope of the calibration curve of the system after linear fitting is 0.016${\text{μV/ppb}}$ , and R2 is 0.998. The NO2 detection limit of system is 2 ppb (3$\sigma$ ) with an average time of 60 s. To verify the results of the system, a diode laser cavity ring-down spectroscopy system (CRDS system, using a 409 nm the diode laser, with a system detection limit of 6.6 × 10–1) is used to measure ambient NO2 simultaneouslyon Lake Dong-Pu in western Hefei, Anhui Province, China. During the experiment, the measured NO2 concentration ranges from 8 to 30 ppb, with an average concentration of 20.8 ppb. The results of two systems have good consistency:alinear fitting slope of 0.94 ± 0.009, an intercept of 1.89 ± 0.18 and acorrelation coefficient of 0.87. The experimental results show that the system can realize the low-cost on-line detection of the ppb level NO2, and it can also be used for the real-time detection of NO2 concentration field.-
Keywords:
- photo-acoustic spectroscopy /
- trace gas detection /
- low power blue diode laser /
- two-stage buffer
[1] Tapia V, Carbajal L, Vasquez V, Espinoza R, Vasquez-Velasquez C, Steenland K, Gonzales G F 2018 Revista Peruana De Medicina Experimental Y Salud Publica 35 190Google Scholar
[2] Vasilkov A P, Joiner J, Oreopoulos L, Gleason J F, Veefkind P, Bucsela E, Celarier E A, Spurr R J D, Platnick S 2009 Atmosph. Chem. Phys. 9 6389Google Scholar
[3] Song W, Jia H F, Li Z L, Tang D L 2018 Sci. Total Environ. 631-632 688Google Scholar
[4] Salome C M, Brown N J, Marks G B, Woolcock A J, Johnson G M, Nancarrow P C, Quigley S, Tiong J 1996 Eur. Respir. J. 9 910Google Scholar
[5] Seo H, Jeong R H, Boo J H, Song J, Boo J H 2017 Appl. Sci. Converg. Technol. 26 218
[6] Meena G S, Jadhav D B 2007 Atmósfera 20 271
[7] United States Environmental Protection Agency Website. http://www.epa.gov[2019-3-8]
[8] Ryerson T B, Williams E J, Fehsenfeld F C 2000 J. Geophys. Res. 105 26447Google Scholar
[9] Yang Y, Dong F Z, Ni Z B, Pang T, Zeng Z Y, Wu B, Zhang Z R 2014 Chin. Phys. B 23 040703Google Scholar
[10] Karpf A, Rao G N 2009 Appl. Opt. 48 408Google Scholar
[11] Dong L, Tittel F K, Li C G, Sanchez N P, Wu H P, Zheng C T, Yu Y J, Sampaolo A, Griffin R J 2016 Opt. Exp. 24 A528Google Scholar
[12] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 物理学报 66 220204Google Scholar
Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar
[13] 胡仁志, 王丹, 谢品华, 陈浩, 凌六一 2016 光学学报 36 312
Hu R Z, Wang D, Xie P H, Chen H, Ling L Y 2016 Acta Opt. Sin. 36 312
[14] Fuchs H, Dube W P, Lerner B M, Wagner N L, Williams E J, Brown S S 2009 Environ. Sci. Technol. 43 7831Google Scholar
[15] Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K D, Tang K, Liang S X, Meng F H, Hu Z K, Xie P H, Liu W Q, Häsler R 2018 Atmosph. Measur. Tech. 11 4531Google Scholar
[16] Ventrillard I, Gorrotxategi-Carbajo P, Romanini D 2017 Appl. Phys. B 123 180
[17] Liu K, Lewicki R, Tittel F K 2016 Sens. Actuat. B: Chemical 237 887Google Scholar
[18] Lewicki R, Doty J H, Curl R F, Tittel F K, Wysocki G 2009 Proc. Nati. Acad. Sci. USA 106 12587Google Scholar
[19] Volkamer R, Baidar S, Campos T L, Coburn S, DiGangi J P, Dix B, Koenig T K, Ortega I, Pierce B R, Reeves M, Sinreich R, Wang S, Zondlo M A, Romashkin P A 2015 Atmosph. Measur. Tech. 8 623
[20] 郁敏捷, 刘铭晖, 董作人, 孙延光, 蔡海文, 魏芳 2015 中国激光 42 351
Yu M J, Liu M H, Dong Z R, Sun Y G, Cai H G, Wei F 2015 Chin. J. Lasers 42 351
[21] Lu X, Qin M, Xie P H, Duan J, Fang W, Ling L Y, Shen L L, Liu J G, Liu W Q 2016 Chin. Phys. B 25 024210Google Scholar
[22] Li A, Xie P H, Liu C, Liu J G, Liu W Q 2007 Chin. Phys. Lett. 24 2859Google Scholar
[23] Thornton J A, Wooldridge P J, Cohen R C 2000 Analyt. Chem. 72 528Google Scholar
[24] D'Ottone L, Campuzano-Jost P, Bauer D, Hynes A J 2001 J. Phys.Chem. A 105 10538Google Scholar
[25] Yin X K, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2017 Sens. Actuat. B: Chemical 247 329Google Scholar
[26] Yi H M, Liu K, Chen W D, Tan T, Wang L, Gao X M 2011 Optics Letters 36 481Google Scholar
[27] Dong L, Wu H P, Zheng H D, Liu Y Y, Liu X L, Jiang W Z, Zhang L, Ma W G, Ren W, Yin W B, Jia S T, Tittel F K 2014 Opt. Lett. 39 2479Google Scholar
[28] Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar
[29] Sampaolo A, Csutak S, Patimisco P, Giglio M, Menduni G, Passaro V, Tittel F K, Deffenbaugh M, Spagnolo V 2019 Sens. Actuat. B: Chemical 282 952Google Scholar
[30] Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sens. Actuat. B: Chemical 221 666Google Scholar
[31] DeMille S, DeLaat R H, Tanner R M, Brooks R L, Westwood N P C 2002 Chem. Phys. Lett. 366 383Google Scholar
[32] 张建锋, 潘孙强, 陈哲敏, 杨眉, 裘越 2017 光电子激光 28 194
Zhang J F, Pan S Q, Chen Z M, Yang M, Qiu Y 2017 J. Optoelectron. Laser 28 194
[33] Pourhashemi A, Farrell R M, Cohen D A, Speck J S, DenBaars S P, Nakamura S 2015 Appl. Phys. Lett. 106 160
[34] Pourhashemi A, Farrell R M, Cohen D A, Becerra D L, DenBaars S P, Nakamura S 2016 Electron. Lett. 52 2003Google Scholar
[35] Mohery M, Abdallah A M, Ali A, Baz S S 2016 Chin. Phys. B 25 050701Google Scholar
[36] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明 2018 物理学报 67 084201Google Scholar
Zhou Y, Cao Y, Zhu G D, Liu K, Tan T, Wang L J, Gao X M 2018 Acta Phys. Sin. 67 084201Google Scholar
[37] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣 2018 物理学报 67 020701Google Scholar
He Y, Ma Y F, Tong Y, Peng Z F, Yu X 2018 Acta Phys. Sin. 67 020701Google Scholar
[38] Voigt S, Orphal J, Burrows J P 2002 J. Photochem. Photobiol. A: Chemistry 149 1Google Scholar
-
表 1 测试结果比较
Table 1. Comparison of test results.
明细 样气响应/${\text{μV}}$ 本底噪声/${\text{μV}}$ 腔体内表面处理前 94.33 ± 2.47 3.27 ± 0.34 腔体内表面处理后 110.27 ± 1.04 2.86 ± 0.33 光学窗片处理前 — 3.28 ± 0.34 光学窗片处理后 — 3.13 ± 0.14 线性电源 — 2.8 ± 0.16 -
[1] Tapia V, Carbajal L, Vasquez V, Espinoza R, Vasquez-Velasquez C, Steenland K, Gonzales G F 2018 Revista Peruana De Medicina Experimental Y Salud Publica 35 190Google Scholar
[2] Vasilkov A P, Joiner J, Oreopoulos L, Gleason J F, Veefkind P, Bucsela E, Celarier E A, Spurr R J D, Platnick S 2009 Atmosph. Chem. Phys. 9 6389Google Scholar
[3] Song W, Jia H F, Li Z L, Tang D L 2018 Sci. Total Environ. 631-632 688Google Scholar
[4] Salome C M, Brown N J, Marks G B, Woolcock A J, Johnson G M, Nancarrow P C, Quigley S, Tiong J 1996 Eur. Respir. J. 9 910Google Scholar
[5] Seo H, Jeong R H, Boo J H, Song J, Boo J H 2017 Appl. Sci. Converg. Technol. 26 218
[6] Meena G S, Jadhav D B 2007 Atmósfera 20 271
[7] United States Environmental Protection Agency Website. http://www.epa.gov[2019-3-8]
[8] Ryerson T B, Williams E J, Fehsenfeld F C 2000 J. Geophys. Res. 105 26447Google Scholar
[9] Yang Y, Dong F Z, Ni Z B, Pang T, Zeng Z Y, Wu B, Zhang Z R 2014 Chin. Phys. B 23 040703Google Scholar
[10] Karpf A, Rao G N 2009 Appl. Opt. 48 408Google Scholar
[11] Dong L, Tittel F K, Li C G, Sanchez N P, Wu H P, Zheng C T, Yu Y J, Sampaolo A, Griffin R J 2016 Opt. Exp. 24 A528Google Scholar
[12] 单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 物理学报 66 220204Google Scholar
Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar
[13] 胡仁志, 王丹, 谢品华, 陈浩, 凌六一 2016 光学学报 36 312
Hu R Z, Wang D, Xie P H, Chen H, Ling L Y 2016 Acta Opt. Sin. 36 312
[14] Fuchs H, Dube W P, Lerner B M, Wagner N L, Williams E J, Brown S S 2009 Environ. Sci. Technol. 43 7831Google Scholar
[15] Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K D, Tang K, Liang S X, Meng F H, Hu Z K, Xie P H, Liu W Q, Häsler R 2018 Atmosph. Measur. Tech. 11 4531Google Scholar
[16] Ventrillard I, Gorrotxategi-Carbajo P, Romanini D 2017 Appl. Phys. B 123 180
[17] Liu K, Lewicki R, Tittel F K 2016 Sens. Actuat. B: Chemical 237 887Google Scholar
[18] Lewicki R, Doty J H, Curl R F, Tittel F K, Wysocki G 2009 Proc. Nati. Acad. Sci. USA 106 12587Google Scholar
[19] Volkamer R, Baidar S, Campos T L, Coburn S, DiGangi J P, Dix B, Koenig T K, Ortega I, Pierce B R, Reeves M, Sinreich R, Wang S, Zondlo M A, Romashkin P A 2015 Atmosph. Measur. Tech. 8 623
[20] 郁敏捷, 刘铭晖, 董作人, 孙延光, 蔡海文, 魏芳 2015 中国激光 42 351
Yu M J, Liu M H, Dong Z R, Sun Y G, Cai H G, Wei F 2015 Chin. J. Lasers 42 351
[21] Lu X, Qin M, Xie P H, Duan J, Fang W, Ling L Y, Shen L L, Liu J G, Liu W Q 2016 Chin. Phys. B 25 024210Google Scholar
[22] Li A, Xie P H, Liu C, Liu J G, Liu W Q 2007 Chin. Phys. Lett. 24 2859Google Scholar
[23] Thornton J A, Wooldridge P J, Cohen R C 2000 Analyt. Chem. 72 528Google Scholar
[24] D'Ottone L, Campuzano-Jost P, Bauer D, Hynes A J 2001 J. Phys.Chem. A 105 10538Google Scholar
[25] Yin X K, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2017 Sens. Actuat. B: Chemical 247 329Google Scholar
[26] Yi H M, Liu K, Chen W D, Tan T, Wang L, Gao X M 2011 Optics Letters 36 481Google Scholar
[27] Dong L, Wu H P, Zheng H D, Liu Y Y, Liu X L, Jiang W Z, Zhang L, Ma W G, Ren W, Yin W B, Jia S T, Tittel F K 2014 Opt. Lett. 39 2479Google Scholar
[28] Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar
[29] Sampaolo A, Csutak S, Patimisco P, Giglio M, Menduni G, Passaro V, Tittel F K, Deffenbaugh M, Spagnolo V 2019 Sens. Actuat. B: Chemical 282 952Google Scholar
[30] Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sens. Actuat. B: Chemical 221 666Google Scholar
[31] DeMille S, DeLaat R H, Tanner R M, Brooks R L, Westwood N P C 2002 Chem. Phys. Lett. 366 383Google Scholar
[32] 张建锋, 潘孙强, 陈哲敏, 杨眉, 裘越 2017 光电子激光 28 194
Zhang J F, Pan S Q, Chen Z M, Yang M, Qiu Y 2017 J. Optoelectron. Laser 28 194
[33] Pourhashemi A, Farrell R M, Cohen D A, Speck J S, DenBaars S P, Nakamura S 2015 Appl. Phys. Lett. 106 160
[34] Pourhashemi A, Farrell R M, Cohen D A, Becerra D L, DenBaars S P, Nakamura S 2016 Electron. Lett. 52 2003Google Scholar
[35] Mohery M, Abdallah A M, Ali A, Baz S S 2016 Chin. Phys. B 25 050701Google Scholar
[36] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明 2018 物理学报 67 084201Google Scholar
Zhou Y, Cao Y, Zhu G D, Liu K, Tan T, Wang L J, Gao X M 2018 Acta Phys. Sin. 67 084201Google Scholar
[37] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣 2018 物理学报 67 020701Google Scholar
He Y, Ma Y F, Tong Y, Peng Z F, Yu X 2018 Acta Phys. Sin. 67 020701Google Scholar
[38] Voigt S, Orphal J, Burrows J P 2002 J. Photochem. Photobiol. A: Chemistry 149 1Google Scholar
计量
- 文章访问数: 8538
- PDF下载量: 76
- 被引次数: 0