搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性

林莹莹 李葵英 单青松 尹华 朱瑞苹

引用本文:
Citation:

ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性

林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹

Photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe quantum dots with a core-shell structure

Lin Ying-Ying, Li Kui-Ying, Shan Qing-Song, Yin Hua, Zhu Rui-Ping
PDF
导出引用
  • ZnSe量子点光电子特性的研究对于其微观电子结构探测和应用领域的扩展具有重要的意义. 本文结合表面光伏与光声技术以及激光Raman研究了不同回流温度下制备L-半胱氨酸(L-Cys)为配体核壳结构ZnSe量子点的微结构和光声与表面光伏特性. 结果发现, 具有n-型光伏特性的ZnSe 量子点在近紫外到可见光范围内展示出优良的表面光伏性质. 尤其在波长为350550 nm范围内光子能量绝大部分用于产生表面光伏效应, 而不是用于无辐射跃迁导致的晶格热振动, 同时证实了光声与表面光伏效应之间的能量互补关系. 实验指认ZnSe量子点在300350 nm短波区域出现的光声信号和在1120, 1340和1455 cm-1高频区域出现的Raman峰与配体L-Cys 的多声子振动模式密切相关. 实验结果表明, 随着回流温度的降低, ZnSe量子点的平均粒径有减小趋势, 这在改善样品的表面效应和小尺寸效应的同时, 有利于提高核壳结构ZnSe 量子点的光伏转换效率.
    The study on photoelectronic characteristics of ZnSe quantum dots (QDs) is of significance for investigating its microelectronic structure and expanding its potential applications because ZnSe QD has low biologic toxicity. In the present paper, the surface photovoltaic and photoacoustic technologies, and laser Raman, X-ray diffraction, transmission electron microscopy and Foureier transform infrared spectroscopy spectrum are jointly used to probe the microstructures, the photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe QDs prepared by water-phase synthesis at different reflux temperatures. The results indicate that the ZnSe QDs with a mean grain size of about 3 nm has a core-shell ZnSe/ZnS/L-Cys structure, in which the sulfhydryl groups in ligand prefer reacting with Zn atom at the (220) face to form the ZnS shell layer between the core-ZnSe and ligand L-Cys. The results show that the QDs with n-type photovoltaic property display a wide range of surface photovoltaic response and weak photoacoustic signal upon the illumination of near ultraviolet to visible light as compared with others QDs with similar core-shell structures in II-VI group. Especially, the strong SPV response and the weak PA signal in a wavelength region of 350-550 nm imply that the photon energies in the range are almost all used to produce the surface photovoltaic (SPV) phenomenon instead of the thermal lattice vibration caused by non-radiative de-excitation process. This reveals the energy complementary relationship between the photoacoustic and the surface photovoltaic phenomena of the QDs. The PA signals appearing in a short wavelength range of 300-350 nm and the Raman peaks located in a high frequency ranges of 1120 cm-1, 1340 cm-1 and 1455 cm-1 are identified as relating closely to the multi-phonon vibration modes of ligand L-Cys. At low reflux temperature, the photoelectric threshold of the SPV response that relates to the core-ZnSe displays a red shift to a certain extent as compared with the bulk ZnSe. The narrowed bandgap may be attributed to quantum confinement effect of the QDs. In addition, the intensity of the SPV response that relates to the core-ZnSe gradually increases with the decrease of the reflux temperature. The results show that the above improved surface photovoltaic characteristics of the QDs may benefit from the reduced average grain size of the ZnSe QDs, thus causing its surface and small-size effects.
      通信作者: 李葵英, kuiyingli@ysu.edu.cn
    • 基金项目: 河北省自然科学基金(批准号: E2013203296)和河北省教育厅科研计划重点项目基金(批准号: ZH200814)资助的课题.
      Corresponding author: Li Kui-Ying, kuiyingli@ysu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013203296), and the Key Reserch Foundation of the Education Department of Hebei Province, China (Grant No. ZH200814).
    [1]

    Li K Y, Xue Z J 2014 Mater. Chem. Phys. 148 253

    [2]

    Feng B, Cao J, Yang J H, Yang S, Han D L 2014 Mater. Res. Bull. 60 794

    [3]

    Senthilkumar K, Kalaivani T, Kanagesan S, Balasubramanian V, Balakrishnan J 2013 J. Mater. Sci: Mater. Electron 24 692

    [4]

    Carbone L, Cozzoli P D 2010 Nano Today 5 449

    [5]

    Goswami B, Pal S, Ghosh C, Sarkar P 2009 J. Phys. Chem. C 113 6439

    [6]

    Colibaba G, Caraman M, Evtodiev I, Evtodiev S, Goncearenco E, Nedeoglo D, Nedeoglo N 2014 J. Lumin. 145 237

    [7]

    Zhang L, Yang H, Yu J, Shao F, Li L, Zhang F, Zhao H 2009 J. Phys. Chem. C 113 5434

    [8]

    Pardo-Gonzalez A P, Castro-Lora H G, Lpez-Carreo L D, Martnez H M, Salcedo N J T 2014 J. Phys. Chem. Solids 75 713

    [9]

    Archana J, Navaneethan M, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C 2012 Mater. Res. Bull. 47 1892

    [10]

    Weaver A L, Gamelin D R 2012 J. Am. Chem. Soc. 134 6819

    [11]

    Wang X, Zhu J, Zhang Y, Jiang J, Wei S 2010 Appl. Phys. A 99 651

    [12]

    Zhu J, Koltypin Y, Gedanken A 2000 Chem. Mater. 12 73

    [13]

    Shakir M, Kushwaha S K, Maurya K K, Bhagavannarayana G 2009 Solid State Commun. 149 2047

    [14]

    Yang L, Xie R, Liu L, Xiao D, Zhu J 2011 J. Phys. Chem. C 115 19507

    [15]

    Yang Y J, Xiang B J 2005 J. Cryst. Growth 284 453

    [16]

    Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Allvisatos A P 2000 Nature 404 59

    [17]

    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science281 2013

    [18]

    An H Z, Zhao Q, Du W M 2004 Chin. Phys. B 13 1753

    [19]

    Zafar M, Ahmed S, Shakil M, Choudhary M A, Mahmood K 2015 Chin. Phys. B 24 0761061

    [20]

    Hines M A, Guyot-Sionnest P 1998 J. Phys. Chem. B 102 3655

    [21]

    Xiong S, Huang S, Tang A, Teng F 2007 Mater. Lett. 61 5091

    [22]

    Lu L W, Wang Z G 2002 Acta Phya. Sin. 51 310 (in Chinese) [卢励吾, 王占国 2002 物理学报 51 310]

    [23]

    Qu J R, Zhen J B, Wang C F, Wu G R, Hao J 2013 Acta Phys. Sin. 62 0788021 (in Chinese) [屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟 2013 物理学报 62 0788021]

    [24]

    Xia M L, Liu C, Zhao Z Y, Ai B, Yin Q Y, Xie J, Han J J, Zhao X J 2015 J. Non-Cryst. Solids 429 79

    [25]

    Murase N, Gao M Y 2004 Mater. Lett. 58 3898

    [26]

    Liu B T, Yu H Y, Wang Y, Peng L G, Han T, Tian L L, Yan L T 2015 J. Alloy. Compd. 640 246

    [27]

    Xue Z J, Li K Y, Sun Z P 2013 Acta Phys. Sin. 62 066801 (in Chinese) [薛振杰, 李葵英, 孙振平 2013 物理学报 62 066801]

    [28]

    Li K Y, Shan Q S, Zhu R P, Yin H, Lin Y Y, Wang L Q 2015 Nanoscale 7 7906

    [29]

    Rosencwaig A, Gersho A 1976 J. Appl. Phys. 47 64

    [30]

    Yin Q R, Wang T, Qian M L 1999 Photoacoustic and Photo-Thermal Technology and Applications (Beijing: Science Press) pp18-34 (in Chinese) [殷庆瑞, 王通, 钱梦騄 1999 光声光热技术及其应用 (北京:科学出版社) 第1834页]

    [31]

    Rosencwaig A (translated by Wang Y J, Zhang S Y, Lu Z G) 1986 Photoacoustic and Photoacoustic Spectroscopy (Beijing: Science Press) pp94-105 (in Chinese) [罗森威格 A (王耀俊, 张淑仪, 卢宗桂 译) 1986 光声学和光声谱学 (北京:科学出版社) 第94105页]

    [32]

    Reiss P, Carayon S, Bleuse J, Pron A 2003 Synthetic Met. 139 649

    [33]

    Kronik L, Shapira Y 1999 Surf. Sci. Rep. 37 1

    [34]

    Li K Y, Liu T, Zhou B J, Wei S L, Yang W Y 2010 Acta Phys. -Chim. Sin. 26 403 (in Chinese) [李葵英, 刘通, 周冰晶, 魏赛玲, 杨伟勇 2010 物理化学学报 26 403]

    [35]

    Li K Y, Zhang H, Yang W Y, Wei S L, Wang D Y 2010 Mater. Chem. Phys. 123 98

    [36]

    Li K Y, Ding Y Y, Guo J, Wang D Y 2008 Mater. Chem. Phys. 112 1001

    [37]

    Li K Y, Song G J, Zhang J, Wang C M, Guo B 2011 J. Photoch. Photobio. A 218 213

    [38]

    Feng B, Yang J H, Cao J, Yang L L, Gao M, Wei M B, Liu Y, Song H 2013 Mater. Res. Bull. 48 1040

    [39]

    Arivazhagan V, Manonmani P M, Rajesh S 2013 J. Alloy. Compd. 577 431

    [40]

    Zhou X, Zeng X H, Yan X Q, Xia W W, Zhou Y X, Shen X S 2014 Mater. Res. Bull. 59 25

    [41]

    Zeng X H, Zhang W, Cui J Y, Zhou M, Chen H T 2014 Mater. Res. Bull. 50 359

    [42]

    Trajić J, Kostić R, Romčević N, Romčević M, Mitrić M, Lazović V, Balaž P, Stojanović 2014 J. Alloy. Compd. 637 401

    [43]

    Daz-Reyes J, Castillo-Ojeda R S, Snchez-Espndola R, Galvn-Arellano M, Zaca-Morn O 2014 Curr. Appl. Phys. 15 103

    [44]

    Sotillo B, Fernndez P, Piqueras J 2013 J. Alloy. Compd. 563 113

    [45]

    Peng J J, Liu S P, Wang L, Liu Z W, He Y Q 2009 J. Colloid Interface Sci. 338 578

    [46]

    Xue X H, Pan J, Xie H M, Wang J H, Zhang S 2009 Talanta 77 1808

    [47]

    Lu G W, An H Z, Chen Y, Huang J H, Zhang H Z, Xiang B, Zhao Q, Yu D P, Du W M 2005 J. Cryst. Growth 274 530

    [48]

    Freitas-Neto E S, Silva A C A, Silva S W, Morais P C, Gmez J A, Baffa O, Dantas N O 2013 J. Raman Spectrosc. 44 1022

    [49]

    Kim K, Lee Y M, Lee H B, Park Y, Bae T Y, Jung Y M, Choi C H, Shin K S 2010 J. Raman Spectrosc. 41 187

    [50]

    Fu X G, An H Z, Du W M 2005 Mater. Lett. 59 1484

    [51]

    Lee H, Kim M S, Suh S W 1991 J. Raman Spectrosc. 22 91

  • [1]

    Li K Y, Xue Z J 2014 Mater. Chem. Phys. 148 253

    [2]

    Feng B, Cao J, Yang J H, Yang S, Han D L 2014 Mater. Res. Bull. 60 794

    [3]

    Senthilkumar K, Kalaivani T, Kanagesan S, Balasubramanian V, Balakrishnan J 2013 J. Mater. Sci: Mater. Electron 24 692

    [4]

    Carbone L, Cozzoli P D 2010 Nano Today 5 449

    [5]

    Goswami B, Pal S, Ghosh C, Sarkar P 2009 J. Phys. Chem. C 113 6439

    [6]

    Colibaba G, Caraman M, Evtodiev I, Evtodiev S, Goncearenco E, Nedeoglo D, Nedeoglo N 2014 J. Lumin. 145 237

    [7]

    Zhang L, Yang H, Yu J, Shao F, Li L, Zhang F, Zhao H 2009 J. Phys. Chem. C 113 5434

    [8]

    Pardo-Gonzalez A P, Castro-Lora H G, Lpez-Carreo L D, Martnez H M, Salcedo N J T 2014 J. Phys. Chem. Solids 75 713

    [9]

    Archana J, Navaneethan M, Hayakawa Y, Ponnusamy S, Muthamizhchelvan C 2012 Mater. Res. Bull. 47 1892

    [10]

    Weaver A L, Gamelin D R 2012 J. Am. Chem. Soc. 134 6819

    [11]

    Wang X, Zhu J, Zhang Y, Jiang J, Wei S 2010 Appl. Phys. A 99 651

    [12]

    Zhu J, Koltypin Y, Gedanken A 2000 Chem. Mater. 12 73

    [13]

    Shakir M, Kushwaha S K, Maurya K K, Bhagavannarayana G 2009 Solid State Commun. 149 2047

    [14]

    Yang L, Xie R, Liu L, Xiao D, Zhu J 2011 J. Phys. Chem. C 115 19507

    [15]

    Yang Y J, Xiang B J 2005 J. Cryst. Growth 284 453

    [16]

    Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Allvisatos A P 2000 Nature 404 59

    [17]

    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science281 2013

    [18]

    An H Z, Zhao Q, Du W M 2004 Chin. Phys. B 13 1753

    [19]

    Zafar M, Ahmed S, Shakil M, Choudhary M A, Mahmood K 2015 Chin. Phys. B 24 0761061

    [20]

    Hines M A, Guyot-Sionnest P 1998 J. Phys. Chem. B 102 3655

    [21]

    Xiong S, Huang S, Tang A, Teng F 2007 Mater. Lett. 61 5091

    [22]

    Lu L W, Wang Z G 2002 Acta Phya. Sin. 51 310 (in Chinese) [卢励吾, 王占国 2002 物理学报 51 310]

    [23]

    Qu J R, Zhen J B, Wang C F, Wu G R, Hao J 2013 Acta Phys. Sin. 62 0788021 (in Chinese) [屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟 2013 物理学报 62 0788021]

    [24]

    Xia M L, Liu C, Zhao Z Y, Ai B, Yin Q Y, Xie J, Han J J, Zhao X J 2015 J. Non-Cryst. Solids 429 79

    [25]

    Murase N, Gao M Y 2004 Mater. Lett. 58 3898

    [26]

    Liu B T, Yu H Y, Wang Y, Peng L G, Han T, Tian L L, Yan L T 2015 J. Alloy. Compd. 640 246

    [27]

    Xue Z J, Li K Y, Sun Z P 2013 Acta Phys. Sin. 62 066801 (in Chinese) [薛振杰, 李葵英, 孙振平 2013 物理学报 62 066801]

    [28]

    Li K Y, Shan Q S, Zhu R P, Yin H, Lin Y Y, Wang L Q 2015 Nanoscale 7 7906

    [29]

    Rosencwaig A, Gersho A 1976 J. Appl. Phys. 47 64

    [30]

    Yin Q R, Wang T, Qian M L 1999 Photoacoustic and Photo-Thermal Technology and Applications (Beijing: Science Press) pp18-34 (in Chinese) [殷庆瑞, 王通, 钱梦騄 1999 光声光热技术及其应用 (北京:科学出版社) 第1834页]

    [31]

    Rosencwaig A (translated by Wang Y J, Zhang S Y, Lu Z G) 1986 Photoacoustic and Photoacoustic Spectroscopy (Beijing: Science Press) pp94-105 (in Chinese) [罗森威格 A (王耀俊, 张淑仪, 卢宗桂 译) 1986 光声学和光声谱学 (北京:科学出版社) 第94105页]

    [32]

    Reiss P, Carayon S, Bleuse J, Pron A 2003 Synthetic Met. 139 649

    [33]

    Kronik L, Shapira Y 1999 Surf. Sci. Rep. 37 1

    [34]

    Li K Y, Liu T, Zhou B J, Wei S L, Yang W Y 2010 Acta Phys. -Chim. Sin. 26 403 (in Chinese) [李葵英, 刘通, 周冰晶, 魏赛玲, 杨伟勇 2010 物理化学学报 26 403]

    [35]

    Li K Y, Zhang H, Yang W Y, Wei S L, Wang D Y 2010 Mater. Chem. Phys. 123 98

    [36]

    Li K Y, Ding Y Y, Guo J, Wang D Y 2008 Mater. Chem. Phys. 112 1001

    [37]

    Li K Y, Song G J, Zhang J, Wang C M, Guo B 2011 J. Photoch. Photobio. A 218 213

    [38]

    Feng B, Yang J H, Cao J, Yang L L, Gao M, Wei M B, Liu Y, Song H 2013 Mater. Res. Bull. 48 1040

    [39]

    Arivazhagan V, Manonmani P M, Rajesh S 2013 J. Alloy. Compd. 577 431

    [40]

    Zhou X, Zeng X H, Yan X Q, Xia W W, Zhou Y X, Shen X S 2014 Mater. Res. Bull. 59 25

    [41]

    Zeng X H, Zhang W, Cui J Y, Zhou M, Chen H T 2014 Mater. Res. Bull. 50 359

    [42]

    Trajić J, Kostić R, Romčević N, Romčević M, Mitrić M, Lazović V, Balaž P, Stojanović 2014 J. Alloy. Compd. 637 401

    [43]

    Daz-Reyes J, Castillo-Ojeda R S, Snchez-Espndola R, Galvn-Arellano M, Zaca-Morn O 2014 Curr. Appl. Phys. 15 103

    [44]

    Sotillo B, Fernndez P, Piqueras J 2013 J. Alloy. Compd. 563 113

    [45]

    Peng J J, Liu S P, Wang L, Liu Z W, He Y Q 2009 J. Colloid Interface Sci. 338 578

    [46]

    Xue X H, Pan J, Xie H M, Wang J H, Zhang S 2009 Talanta 77 1808

    [47]

    Lu G W, An H Z, Chen Y, Huang J H, Zhang H Z, Xiang B, Zhao Q, Yu D P, Du W M 2005 J. Cryst. Growth 274 530

    [48]

    Freitas-Neto E S, Silva A C A, Silva S W, Morais P C, Gmez J A, Baffa O, Dantas N O 2013 J. Raman Spectrosc. 44 1022

    [49]

    Kim K, Lee Y M, Lee H B, Park Y, Bae T Y, Jung Y M, Choi C H, Shin K S 2010 J. Raman Spectrosc. 41 187

    [50]

    Fu X G, An H Z, Du W M 2005 Mater. Lett. 59 1484

    [51]

    Lee H, Kim M S, Suh S W 1991 J. Raman Spectrosc. 22 91

  • [1] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理. 物理学报, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [2] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测. 物理学报, 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [4] 洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为. 物理学报, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [5] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射. 物理学报, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [6] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [7] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶. 物理学报, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [8] 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控. 物理学报, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [9] 张宇文, 邓永和, 文大东, 赵鹤平, 高明. Al原子在Ni基衬底表面的扩散及团簇的形成. 物理学报, 2020, 69(13): 136601. doi: 10.7498/aps.69.20200120
    [10] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射. 物理学报, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [11] 程刚, 曹渊, 刘锟, 曹亚南, 陈家金, 高晓明. 光声光谱检测装置中光声池的数值计算及优化. 物理学报, 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [12] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体. 物理学报, 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [13] 任伦, 李葵英, 崔洁圆, 赵杰. ZnSe量子点敏化纳米TiO2薄膜光电子特性研究. 物理学报, 2017, 66(6): 067301. doi: 10.7498/aps.66.067301
    [14] 许雪梅, 戴鹏, 杨兵初, 尹林子, 曹建, 丁一鹏, 曹粲. 光声池中微弱光声信号检测. 物理学报, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [15] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究. 物理学报, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [16] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲. 基于光声光谱技术的NO,NO2气体分析仪研究. 物理学报, 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [17] 余荣, 江月松, 余兰, 欧军. 利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征. 物理学报, 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [18] 薛振杰, 李葵英, 孙振平. 核壳结构硒化镉/硫化镉/巯基乙酸量子点载流子输运特性. 物理学报, 2013, 62(6): 066801. doi: 10.7498/aps.62.066801
    [19] 舒明飞, 尚玉黎, 陈威, 曹万强. 核壳结构对弛豫铁电体介电行为的影响. 物理学报, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [20] 袁长迎, 炎正馨, 蒙瑰, 李智慧, 尚丽平. 高浓度气体共振光声光谱信号饱和特性研究. 物理学报, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
计量
  • 文章访问数:  6593
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-16
  • 修回日期:  2015-11-16
  • 刊出日期:  2016-02-05

/

返回文章
返回