-
三阶Ho3+离子的红光发射位于生物组织的“光学窗口”中, 在生物医学领域具有巨大应用前景, 增强其红光发射已成为大家关注热点. 为此, 本文借助外延生长技术构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4纳米核壳结构, 并在其外壳中引入不同浓度的敏化离子Yb3+和Nd3+离子, 以构建新的能量传递通道, 实现Ho3+离子的上转换红光发射增强. 实验结果表明: 在近红外光980 nm 及800 nm激发下, NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+ 和NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+核壳纳米结构均可实现Ho3+离子的红光发射增强, 最高可增强6.1倍, 主要是由于外壳中的敏化离子可传递更多的激发能给Ho3+离子. 同时, 研究发现在双波长(980 nm +800 nm)共激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体的红光发射强度明显高于两个单一波长激发下的红光发射强度及其之和, 其原因是由双波长共激发的协同效应所致. 由此可见, 通过引入不同敏化离子构建多模式激发的稀土掺杂纳米核壳结构, 不仅可实现上转换红光发射的增强及激发的有效调控, 且可为进一步拓展该类材料在生物医学、防伪编码、多色显示等领域中的应用提供新思路.The red upconversion (UC) emission of Ho3+ ions is located in an “optical window” range of the biological tissue, which has great prospects in the biology application. In this work, the NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x%Yb3+ and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/x%Nd3+ core-shell (CS) nanoparticles (NPs) are built based on the epitaxial growth technology by the high-temperature co-precipitation method in order to enhance red UC emission. The crystal structure and morphology of NaYF4 CS NPs are characterized by X-ray diffraction and transmission electron microscope. It can be found that the morphology of NaYF4 CS NPs changes from sphere into rod shape when coated with NaYF4 shell, and has a pure hexagonal-phase crystal structure. Under 980 nm excitation, the red UC emission intensity of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+ CS NPs is strongest and enhanced about 5.2 times than that of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs. Under 800 nm excitation, the red emission intensity of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs is increased about 6.1 times compared with that of the NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/5%Nd3+ CS NPs. This is because the constructed CS effectively reduces the non-radiative decay from the surface defects of NPs, and the doped Yb3+ and Nd3+ ions in the NaYF4 shells can transfer more excitation energy to Ho3+ ions in the core. In addition, the NaYF4: 20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NP is excited by dual-wavelengths co-excitation (800 nm + 980 nm). It is found that the red UC emission intensity under the co-excitation of dual-wavelengths is higher than the sum of the excitation intensities of two single wavelengths (800 nm and 980 nm), which is due to the synergistic effect generated under the co-excitation of 980 nm and 800 nm near infrared laser. Therefore, different CS structures constructed by introducing different energy transfer channels can achieve the enhancement of the red UC emission under different excitation conditions, and the dual-wavelength co-excitation provides a new way to improve the penetration depth and the detection sensitivity for further expanding the applications in the field of biomedicine.
-
Keywords:
- red upconversion emission /
- NaYF4 nanoparticles /
- core-shell nanoparticles /
- dual-wavelength co-excitation
[1] Sivakumar S, van Veggel F C J M, Raudsepp M 2005 J. Am. Chem. Soc. 127 12464Google Scholar
[2] Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B-Eng. 179 107504Google Scholar
[3] Shalav A, Richards B S, Trupke T, Trupke T, Krämer K W, Güdel H U 2005 Appl. Phys. Lett. 86 013505Google Scholar
[4] An M Y, Cui J B, He Q, Wang L Y 2013 J. Mater. Chem. B 1 1333Google Scholar
[5] Li J J, Cheng F F, Huang H P, Li L L, Zhu J J 2015 Chem. Soc. Rev. 44 7855Google Scholar
[6] Zhu Y R, Zhao S W, Zhou B, Zhu H, Wang Y F 2017 J. Phys. Chem. C 121 18909Google Scholar
[7] Chen X, Jin L M, Kong W, Sun T Y, Zhang W F, Zhang X H, Fan J, Yu S F, Wang F 2016 Nat. Commun. 7 10304Google Scholar
[8] Liang Y J, Noh H M, Xue J P, Choi H Y, Park S H, Choi B C, Kim J Y, Jeong J H 2017 Mater. Design. 130 190Google Scholar
[9] Campos-Gonçalvesa I, Costa B F O, Santos R F, Durães L 2017 Mater. Design. 130 263Google Scholar
[10] Szczeszak A, Jurga N, Lis F 2020 Ceram. Int. 46 26382Google Scholar
[11] Rakov N, Maciel G S, Sundheimer M L, Menezes L D S, Gomes A S L, Messaddeq Y, Cassanjes F C, Poirier G, Ribeiro S J L 2002 J. Appl. Phys. 92 6337Google Scholar
[12] Liu Y F, Zhao J, Zhang Y, Zhang H F, Zhang Z L, Gao H P, Mao Y L 2019 J. Alloy. Compd. 810 151761Google Scholar
[13] Huang X Y, Lin J 2015 J. Mater. Chem. C 3 7652Google Scholar
[14] Zhan S P, Xiong J, Nie G Z, Wu S B, Hu J S, Wu X F, Hu S G, Zhang J, Gao Y Y, Liu Y X 2019 Adv. Mater. Interfaces 6 1802089Google Scholar
[15] Li X M, Zhang F, Zhao D Y 2015 Chem. Soc. Rev. 44 1346Google Scholar
[16] Nie Z Y, Ke X X, Li D N, Zhao Y L, Zhu L L, Qiao R, Zhang X L 2019 J. Phys. Chem. C 123 22959Google Scholar
[17] Wang D, Xue B, Kong X G, Tu L P, Liu X M, Zhang Y L, Chang Y L, Luo Y S, Zhao H Y, Zhang H 2015 Nanoscale 7 190Google Scholar
[18] Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano. 7 7200Google Scholar
[19] Shi Z L, Duan Y, Zhu X J, Wang Q W, Li D D, Hu K, Feng W, Li F Y, Xu C X 2018 Nanotechnology 29 094001Google Scholar
[20] Xu B, Zhang X, Huang W J, Yang Y J, Ma Y, Gu Z J, Zhai T Y, Zhao Y L 2016 J. Mater. Chem. B 4 2776Google Scholar
[21] Cui X S, Cheng Y, Lin H, Wu Q P, Xu J, Wang Y S 2019 J. Rare Earth. 37 573Google Scholar
[22] Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M 2004 J. Appl. Phys. 96 661Google Scholar
[23] Tian G, Gu Z J, Zhou L J, Yin W Y, Liu X X, Yan L, Jin S, Ren W L, Xing G M, Li S J, Zhao Y L 2012 Adv. Mater. 24 1226Google Scholar
[24] Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683Google Scholar
[25] Gao W, Kong X Q, Han Q Y, Chen Y, Zhang J, Zhao X, Yan X W, Liu J H, Shi J, Dong J 2018 J. Lumin. 202 381Google Scholar
[26] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟 2019 物理学报 68 174204Google Scholar
Yan X W, Wang Z J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J, Gao W 2019 Acta Phys. Sin 68 174204Google Scholar
[27] Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumin. 179 562Google Scholar
[28] Dong J, Zhang J, Han Q Y, Zhao X, Yan X W, Liu J H, Ge H B, Gao W 2019 J. Lumin. 207 361Google Scholar
[29] Gao W, Dong J, Yan X W, Liu L, Liu J H, Zhang W W 2017 J. Lumin. 192 513Google Scholar
[30] Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloy. Compd. 818 152934Google Scholar
[31] Chen D Q, Liu L, Huang P, Ding M Y, Zhong J S, Ji Z G 2015 J. Phys. Chem. Lett. 6 2833Google Scholar
[32] Li J C, Zhu X J, Xue M, Feng W, Ma R L, Li F Y 2016 Inorg. Chem. 55 10278Google Scholar
[33] Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924Google Scholar
[34] Kuang Y, Xu J T, Wang C, Li T Y, Gai S L, He F, Yang P P 2019 Chem. Mater. 31 7898Google Scholar
[35] Zhao J, Liu Y F, Zhou C P, Gao H P, Zhang H F, Mao Y L 2020 J. Lumin. 219 116936Google Scholar
[36] Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar
[37] Wang J M, Lin H, Cheng Y, Cui X S, Gao Y, Ji Z L, Xu J, Wang Y S 2019 Sensor Actuat. B-Chem. 278 165Google Scholar
[38] Chen Z, Zhang X W, Zeng S F, Liu Z J, Ma Z J, Dong G P, Zhou S F, Liu X F, Qiu J R 2015 Applied Physics Express 8 032301Google Scholar
[39] Zhou J J, Deng J Y, Zhu H M, Chen X Y, Teng Y, Jia H, Xu S Q, Qiu J R 2013 J. Mater. Chem. C 1 8023Google Scholar
[40] Yang Y, Li W W, Mei B C, Song J H, Yi G Q, Zhou Z W, Liu J S 2019 J. Lumin. 213 504Google Scholar
[41] Li P, Guo L N, Zhang Z X, Li T S, Chen P L 2018 Dyes and Pigments 154 242Google Scholar
-
图 2 (a) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体、(b) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@ NaYF4核壳纳米晶体、(c) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@ NaYF4:15%Yb3+ 核壳纳米晶体和(d) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ @NaYF4:15% Yb3+/10%Nd3+核壳纳米晶体的TEM图, 插图分别为相应的粒径尺寸分布图
Fig. 2. The TEM images and size distribution of the (a) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs, (b) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4 CS NPs, (c) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+ CS NPs, and (d) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ @NaYF4:15%Yb3+/10%Nd3+ CS NPs.
图 3 在近红外光980 nm激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体和NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15)核壳纳米晶体的(a)上转换发射光谱、(b)增强因子和(c)红绿比图
Fig. 3. (a) Upconversion (UC) emission spectra, (b) enhancement factor and (c) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) CS NPs under the excitation of a 980 nm NIR laser.
图 4 在近红外光800 nm激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/x %Nd3+ (x = 5, 10, 15, 20, 30, 40)核壳纳米晶体的(a)上转换发射光谱、(b)增强因子和(c)红绿比图
Fig. 4. (a) The UC emission spectra, (b) enhancement factor and (c) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/x %Nd3+ (x = 5, 10, 15, 20, 30, 40) CS NPs under the excitation of an 800 nm NIR laser.
图 5 (a) 在980 nm近红外光激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+核壳纳米晶体和(c)在800 nm近红外光激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体的上转换发射光谱, 插图分别为其随激发功率变化的红绿比图; (b)和(d)为对应的发光强度与激发功率间的依赖关系
Fig. 5. (a) and (c) The UC emission spectra and corresponding R/G ratio, (b) and (d) UC emission intensity versus excitation power of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+ CS NPs with 980 nm excitation power increasing from 40 mW to 100 mW (a), (b) and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs with 800 nm excitation power increasing from 70 mW to 130 mW (c), (d).
图 7 在980 nm近红外光激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体和NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) 核壳纳米晶体的上转换红光发射的寿命衰减曲线
Fig. 7. Luminescence lifetimes of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+NPs and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) CS NPs under 980 nm excitation at 642 nm.
图 8 分别在980 nm激发下、800 nm激发下、980 nm和800 nm共同激发下NaYF4:20%Yb3+ /2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体的(a)上转换发射光谱和(b)红绿比图
Fig. 8. (a) The UC emission spectra and (b) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs under 980 nm, 800 nm and simultaneous 980 nm + 800 nm excitation.
图 9 NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体在(a) 不同980 nm激光功率下, 固定800 nm激光功率为120 mW时和(d) 不同800 nm激光功率下, 固定980 nm激光功率为120 mW时的上转换发射光谱; (b) 和 (e)为其对应的随不同波长激发功率变化的增强因子图; (c) 和 (f) 为其对应的随不同波长激发功率变化的红绿比图
Fig. 9. (a), (d) The UC emission spectra, (b), (e) enhancement factor and (c), (f) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs on the excitation power of 980 nm with the power of 800 nm laser fixed at 120 mW ((a)–(c)) and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs on the excitation power of 800 nm with the power of 980 nm laser fixed at 120 mW ((d)–(f)).
表 1 NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体和NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+核壳纳米晶体的上转换红光发射的荧光寿命
Table 1. Luminescence lifetimes of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) CS NPs under 980 nm excitation at 642 nm.
Samples Lifetime/μs a: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ 208.7 ± 4.7 b: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4 555.4 ± 4.1 c: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+ 667.6 ± 5.7 d: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:10%Yb3+ 499.8 ± 1.7 e: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+ 321.8 ± 1.3 -
[1] Sivakumar S, van Veggel F C J M, Raudsepp M 2005 J. Am. Chem. Soc. 127 12464Google Scholar
[2] Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B-Eng. 179 107504Google Scholar
[3] Shalav A, Richards B S, Trupke T, Trupke T, Krämer K W, Güdel H U 2005 Appl. Phys. Lett. 86 013505Google Scholar
[4] An M Y, Cui J B, He Q, Wang L Y 2013 J. Mater. Chem. B 1 1333Google Scholar
[5] Li J J, Cheng F F, Huang H P, Li L L, Zhu J J 2015 Chem. Soc. Rev. 44 7855Google Scholar
[6] Zhu Y R, Zhao S W, Zhou B, Zhu H, Wang Y F 2017 J. Phys. Chem. C 121 18909Google Scholar
[7] Chen X, Jin L M, Kong W, Sun T Y, Zhang W F, Zhang X H, Fan J, Yu S F, Wang F 2016 Nat. Commun. 7 10304Google Scholar
[8] Liang Y J, Noh H M, Xue J P, Choi H Y, Park S H, Choi B C, Kim J Y, Jeong J H 2017 Mater. Design. 130 190Google Scholar
[9] Campos-Gonçalvesa I, Costa B F O, Santos R F, Durães L 2017 Mater. Design. 130 263Google Scholar
[10] Szczeszak A, Jurga N, Lis F 2020 Ceram. Int. 46 26382Google Scholar
[11] Rakov N, Maciel G S, Sundheimer M L, Menezes L D S, Gomes A S L, Messaddeq Y, Cassanjes F C, Poirier G, Ribeiro S J L 2002 J. Appl. Phys. 92 6337Google Scholar
[12] Liu Y F, Zhao J, Zhang Y, Zhang H F, Zhang Z L, Gao H P, Mao Y L 2019 J. Alloy. Compd. 810 151761Google Scholar
[13] Huang X Y, Lin J 2015 J. Mater. Chem. C 3 7652Google Scholar
[14] Zhan S P, Xiong J, Nie G Z, Wu S B, Hu J S, Wu X F, Hu S G, Zhang J, Gao Y Y, Liu Y X 2019 Adv. Mater. Interfaces 6 1802089Google Scholar
[15] Li X M, Zhang F, Zhao D Y 2015 Chem. Soc. Rev. 44 1346Google Scholar
[16] Nie Z Y, Ke X X, Li D N, Zhao Y L, Zhu L L, Qiao R, Zhang X L 2019 J. Phys. Chem. C 123 22959Google Scholar
[17] Wang D, Xue B, Kong X G, Tu L P, Liu X M, Zhang Y L, Chang Y L, Luo Y S, Zhao H Y, Zhang H 2015 Nanoscale 7 190Google Scholar
[18] Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano. 7 7200Google Scholar
[19] Shi Z L, Duan Y, Zhu X J, Wang Q W, Li D D, Hu K, Feng W, Li F Y, Xu C X 2018 Nanotechnology 29 094001Google Scholar
[20] Xu B, Zhang X, Huang W J, Yang Y J, Ma Y, Gu Z J, Zhai T Y, Zhao Y L 2016 J. Mater. Chem. B 4 2776Google Scholar
[21] Cui X S, Cheng Y, Lin H, Wu Q P, Xu J, Wang Y S 2019 J. Rare Earth. 37 573Google Scholar
[22] Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M 2004 J. Appl. Phys. 96 661Google Scholar
[23] Tian G, Gu Z J, Zhou L J, Yin W Y, Liu X X, Yan L, Jin S, Ren W L, Xing G M, Li S J, Zhao Y L 2012 Adv. Mater. 24 1226Google Scholar
[24] Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683Google Scholar
[25] Gao W, Kong X Q, Han Q Y, Chen Y, Zhang J, Zhao X, Yan X W, Liu J H, Shi J, Dong J 2018 J. Lumin. 202 381Google Scholar
[26] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟 2019 物理学报 68 174204Google Scholar
Yan X W, Wang Z J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J, Gao W 2019 Acta Phys. Sin 68 174204Google Scholar
[27] Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumin. 179 562Google Scholar
[28] Dong J, Zhang J, Han Q Y, Zhao X, Yan X W, Liu J H, Ge H B, Gao W 2019 J. Lumin. 207 361Google Scholar
[29] Gao W, Dong J, Yan X W, Liu L, Liu J H, Zhang W W 2017 J. Lumin. 192 513Google Scholar
[30] Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloy. Compd. 818 152934Google Scholar
[31] Chen D Q, Liu L, Huang P, Ding M Y, Zhong J S, Ji Z G 2015 J. Phys. Chem. Lett. 6 2833Google Scholar
[32] Li J C, Zhu X J, Xue M, Feng W, Ma R L, Li F Y 2016 Inorg. Chem. 55 10278Google Scholar
[33] Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924Google Scholar
[34] Kuang Y, Xu J T, Wang C, Li T Y, Gai S L, He F, Yang P P 2019 Chem. Mater. 31 7898Google Scholar
[35] Zhao J, Liu Y F, Zhou C P, Gao H P, Zhang H F, Mao Y L 2020 J. Lumin. 219 116936Google Scholar
[36] Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar
[37] Wang J M, Lin H, Cheng Y, Cui X S, Gao Y, Ji Z L, Xu J, Wang Y S 2019 Sensor Actuat. B-Chem. 278 165Google Scholar
[38] Chen Z, Zhang X W, Zeng S F, Liu Z J, Ma Z J, Dong G P, Zhou S F, Liu X F, Qiu J R 2015 Applied Physics Express 8 032301Google Scholar
[39] Zhou J J, Deng J Y, Zhu H M, Chen X Y, Teng Y, Jia H, Xu S Q, Qiu J R 2013 J. Mater. Chem. C 1 8023Google Scholar
[40] Yang Y, Li W W, Mei B C, Song J H, Yi G Q, Zhou Z W, Liu J S 2019 J. Lumin. 213 504Google Scholar
[41] Li P, Guo L N, Zhang Z X, Li T S, Chen P L 2018 Dyes and Pigments 154 242Google Scholar
计量
- 文章访问数: 5537
- PDF下载量: 102
- 被引次数: 0