搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射

董军 张晨雪 程小同 邢宇 韩庆艳 严学文 祁建霞 刘继红 杨祎 高伟

引用本文:
Citation:

构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射

董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟

Enhancing red upconversion emission of Ho3+ ions through constructing NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+ core-shell structures

Dong Jun, Zhang Chen-Xue, Cheng Xiao-Tong, Xing Yu, Han Qing-Yan, Yan Xue-Wen, Qi Jian-Xia, Liu Ji-Hong, Yang Yi, Gao Wei
PDF
HTML
导出引用
  • 三阶Ho3+离子的红光发射位于生物组织的“光学窗口”中, 在生物医学领域具有巨大应用前景, 增强其红光发射已成为大家关注热点. 为此, 本文借助外延生长技术构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4纳米核壳结构, 并在其外壳中引入不同浓度的敏化离子Yb3+和Nd3+离子, 以构建新的能量传递通道, 实现Ho3+离子的上转换红光发射增强. 实验结果表明: 在近红外光980 nm 及800 nm激发下, NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+ 和NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+核壳纳米结构均可实现Ho3+离子的红光发射增强, 最高可增强6.1倍, 主要是由于外壳中的敏化离子可传递更多的激发能给Ho3+离子. 同时, 研究发现在双波长(980 nm +800 nm)共激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体的红光发射强度明显高于两个单一波长激发下的红光发射强度及其之和, 其原因是由双波长共激发的协同效应所致. 由此可见, 通过引入不同敏化离子构建多模式激发的稀土掺杂纳米核壳结构, 不仅可实现上转换红光发射的增强及激发的有效调控, 且可为进一步拓展该类材料在生物医学、防伪编码、多色显示等领域中的应用提供新思路.
    The red upconversion (UC) emission of Ho3+ ions is located in an “optical window” range of the biological tissue, which has great prospects in the biology application. In this work, the NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x%Yb3+ and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/x%Nd3+ core-shell (CS) nanoparticles (NPs) are built based on the epitaxial growth technology by the high-temperature co-precipitation method in order to enhance red UC emission. The crystal structure and morphology of NaYF4 CS NPs are characterized by X-ray diffraction and transmission electron microscope. It can be found that the morphology of NaYF4 CS NPs changes from sphere into rod shape when coated with NaYF4 shell, and has a pure hexagonal-phase crystal structure. Under 980 nm excitation, the red UC emission intensity of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+ CS NPs is strongest and enhanced about 5.2 times than that of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs. Under 800 nm excitation, the red emission intensity of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs is increased about 6.1 times compared with that of the NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/5%Nd3+ CS NPs. This is because the constructed CS effectively reduces the non-radiative decay from the surface defects of NPs, and the doped Yb3+ and Nd3+ ions in the NaYF4 shells can transfer more excitation energy to Ho3+ ions in the core. In addition, the NaYF4: 20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NP is excited by dual-wavelengths co-excitation (800 nm + 980 nm). It is found that the red UC emission intensity under the co-excitation of dual-wavelengths is higher than the sum of the excitation intensities of two single wavelengths (800 nm and 980 nm), which is due to the synergistic effect generated under the co-excitation of 980 nm and 800 nm near infrared laser. Therefore, different CS structures constructed by introducing different energy transfer channels can achieve the enhancement of the red UC emission under different excitation conditions, and the dual-wavelength co-excitation provides a new way to improve the penetration depth and the detection sensitivity for further expanding the applications in the field of biomedicine.
      通信作者: 高伟, gaowei@xupt.edu.cn
    • 基金项目: 陕西省国际交流项目(批准号: 2019KW-027)、陕西省自然科学基金(批准号: 2019JQ-864)、陕西省重点研发项目(批准号: 2020GY-101, 2020GY-127)、西安市科技创新人才企业项目(批准号: 2020KJRC0107, 2020KJRC0112)和西安邮电大学联合示范工作站项目(批准号: YJGJ201905)资助的课题
      Corresponding author: Gao Wei, gaowei@xupt.edu.cn
    • Funds: Project support by the Shaanxi Province International Cooperation and Exchange Program, China (Grant No. 2019KW-027), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2019JQ-864), the Key R&D program of Shaanxi Province, China (Grant Nos. 2020GY-101, 2020GY-127), the Xi’an Science and Technology Innovation Talent Service Enterprise Project, China (Grant Nos. 2020KJRC0107, 2020KJRC0112), and the Funded by Xi’an University of Posts and Telecommunications Joint Postgraduate Cultivation Workstation, China (Grant No. YJGJ201905)
    [1]

    Sivakumar S, van Veggel F C J M, Raudsepp M 2005 J. Am. Chem. Soc. 127 12464Google Scholar

    [2]

    Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B-Eng. 179 107504Google Scholar

    [3]

    Shalav A, Richards B S, Trupke T, Trupke T, Krämer K W, Güdel H U 2005 Appl. Phys. Lett. 86 013505Google Scholar

    [4]

    An M Y, Cui J B, He Q, Wang L Y 2013 J. Mater. Chem. B 1 1333Google Scholar

    [5]

    Li J J, Cheng F F, Huang H P, Li L L, Zhu J J 2015 Chem. Soc. Rev. 44 7855Google Scholar

    [6]

    Zhu Y R, Zhao S W, Zhou B, Zhu H, Wang Y F 2017 J. Phys. Chem. C 121 18909Google Scholar

    [7]

    Chen X, Jin L M, Kong W, Sun T Y, Zhang W F, Zhang X H, Fan J, Yu S F, Wang F 2016 Nat. Commun. 7 10304Google Scholar

    [8]

    Liang Y J, Noh H M, Xue J P, Choi H Y, Park S H, Choi B C, Kim J Y, Jeong J H 2017 Mater. Design. 130 190Google Scholar

    [9]

    Campos-Gonçalvesa I, Costa B F O, Santos R F, Durães L 2017 Mater. Design. 130 263Google Scholar

    [10]

    Szczeszak A, Jurga N, Lis F 2020 Ceram. Int. 46 26382Google Scholar

    [11]

    Rakov N, Maciel G S, Sundheimer M L, Menezes L D S, Gomes A S L, Messaddeq Y, Cassanjes F C, Poirier G, Ribeiro S J L 2002 J. Appl. Phys. 92 6337Google Scholar

    [12]

    Liu Y F, Zhao J, Zhang Y, Zhang H F, Zhang Z L, Gao H P, Mao Y L 2019 J. Alloy. Compd. 810 151761Google Scholar

    [13]

    Huang X Y, Lin J 2015 J. Mater. Chem. C 3 7652Google Scholar

    [14]

    Zhan S P, Xiong J, Nie G Z, Wu S B, Hu J S, Wu X F, Hu S G, Zhang J, Gao Y Y, Liu Y X 2019 Adv. Mater. Interfaces 6 1802089Google Scholar

    [15]

    Li X M, Zhang F, Zhao D Y 2015 Chem. Soc. Rev. 44 1346Google Scholar

    [16]

    Nie Z Y, Ke X X, Li D N, Zhao Y L, Zhu L L, Qiao R, Zhang X L 2019 J. Phys. Chem. C 123 22959Google Scholar

    [17]

    Wang D, Xue B, Kong X G, Tu L P, Liu X M, Zhang Y L, Chang Y L, Luo Y S, Zhao H Y, Zhang H 2015 Nanoscale 7 190Google Scholar

    [18]

    Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano. 7 7200Google Scholar

    [19]

    Shi Z L, Duan Y, Zhu X J, Wang Q W, Li D D, Hu K, Feng W, Li F Y, Xu C X 2018 Nanotechnology 29 094001Google Scholar

    [20]

    Xu B, Zhang X, Huang W J, Yang Y J, Ma Y, Gu Z J, Zhai T Y, Zhao Y L 2016 J. Mater. Chem. B 4 2776Google Scholar

    [21]

    Cui X S, Cheng Y, Lin H, Wu Q P, Xu J, Wang Y S 2019 J. Rare Earth. 37 573Google Scholar

    [22]

    Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M 2004 J. Appl. Phys. 96 661Google Scholar

    [23]

    Tian G, Gu Z J, Zhou L J, Yin W Y, Liu X X, Yan L, Jin S, Ren W L, Xing G M, Li S J, Zhao Y L 2012 Adv. Mater. 24 1226Google Scholar

    [24]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683Google Scholar

    [25]

    Gao W, Kong X Q, Han Q Y, Chen Y, Zhang J, Zhao X, Yan X W, Liu J H, Shi J, Dong J 2018 J. Lumin. 202 381Google Scholar

    [26]

    严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟 2019 物理学报 68 174204Google Scholar

    Yan X W, Wang Z J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J, Gao W 2019 Acta Phys. Sin 68 174204Google Scholar

    [27]

    Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumin. 179 562Google Scholar

    [28]

    Dong J, Zhang J, Han Q Y, Zhao X, Yan X W, Liu J H, Ge H B, Gao W 2019 J. Lumin. 207 361Google Scholar

    [29]

    Gao W, Dong J, Yan X W, Liu L, Liu J H, Zhang W W 2017 J. Lumin. 192 513Google Scholar

    [30]

    Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloy. Compd. 818 152934Google Scholar

    [31]

    Chen D Q, Liu L, Huang P, Ding M Y, Zhong J S, Ji Z G 2015 J. Phys. Chem. Lett. 6 2833Google Scholar

    [32]

    Li J C, Zhu X J, Xue M, Feng W, Ma R L, Li F Y 2016 Inorg. Chem. 55 10278Google Scholar

    [33]

    Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924Google Scholar

    [34]

    Kuang Y, Xu J T, Wang C, Li T Y, Gai S L, He F, Yang P P 2019 Chem. Mater. 31 7898Google Scholar

    [35]

    Zhao J, Liu Y F, Zhou C P, Gao H P, Zhang H F, Mao Y L 2020 J. Lumin. 219 116936Google Scholar

    [36]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar

    [37]

    Wang J M, Lin H, Cheng Y, Cui X S, Gao Y, Ji Z L, Xu J, Wang Y S 2019 Sensor Actuat. B-Chem. 278 165Google Scholar

    [38]

    Chen Z, Zhang X W, Zeng S F, Liu Z J, Ma Z J, Dong G P, Zhou S F, Liu X F, Qiu J R 2015 Applied Physics Express 8 032301Google Scholar

    [39]

    Zhou J J, Deng J Y, Zhu H M, Chen X Y, Teng Y, Jia H, Xu S Q, Qiu J R 2013 J. Mater. Chem. C 1 8023Google Scholar

    [40]

    Yang Y, Li W W, Mei B C, Song J H, Yi G Q, Zhou Z W, Liu J S 2019 J. Lumin. 213 504Google Scholar

    [41]

    Li P, Guo L N, Zhang Z X, Li T S, Chen P L 2018 Dyes and Pigments 154 242Google Scholar

  • 图 1  NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体及相应核壳纳米晶体的XRD图

    Fig. 1.  The XRD patterns of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ nanoparticles (NPs) and core-shell (CS) structures.

    图 2  (a) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体、(b) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@ NaYF4核壳纳米晶体、(c) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@ NaYF4:15%Yb3+ 核壳纳米晶体和(d) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ @NaYF4:15% Yb3+/10%Nd3+核壳纳米晶体的TEM图, 插图分别为相应的粒径尺寸分布图

    Fig. 2.  The TEM images and size distribution of the (a) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs, (b) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4 CS NPs, (c) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+ CS NPs, and (d) NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ @NaYF4:15%Yb3+/10%Nd3+ CS NPs.

    图 3  在近红外光980 nm激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体和NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15)核壳纳米晶体的(a)上转换发射光谱、(b)增强因子和(c)红绿比图

    Fig. 3.  (a) Upconversion (UC) emission spectra, (b) enhancement factor and (c) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) CS NPs under the excitation of a 980 nm NIR laser.

    图 4  在近红外光800 nm激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/x %Nd3+ (x = 5, 10, 15, 20, 30, 40)核壳纳米晶体的(a)上转换发射光谱、(b)增强因子和(c)红绿比图

    Fig. 4.  (a) The UC emission spectra, (b) enhancement factor and (c) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/x %Nd3+ (x = 5, 10, 15, 20, 30, 40) CS NPs under the excitation of an 800 nm NIR laser.

    图 5  (a) 在980 nm近红外光激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+核壳纳米晶体和(c)在800 nm近红外光激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体的上转换发射光谱, 插图分别为其随激发功率变化的红绿比图; (b)和(d)为对应的发光强度与激发功率间的依赖关系

    Fig. 5.  (a) and (c) The UC emission spectra and corresponding R/G ratio, (b) and (d) UC emission intensity versus excitation power of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+ CS NPs with 980 nm excitation power increasing from 40 mW to 100 mW (a), (b) and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs with 800 nm excitation power increasing from 70 mW to 130 mW (c), (d).

    图 6  Nd3+, Yb3+, Ho3+ 和 Ce3+离子的能级图和可能的上转换跃迁机理

    Fig. 6.  Energy level diagrams of Nd3+, Yb3+, Ho3+ and Ce3+ ions as well as proposed UC mechanisms.

    图 7  在980 nm近红外光激发下, NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体和NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) 核壳纳米晶体的上转换红光发射的寿命衰减曲线

    Fig. 7.  Luminescence lifetimes of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+NPs and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) CS NPs under 980 nm excitation at 642 nm.

    图 8  分别在980 nm激发下、800 nm激发下、980 nm和800 nm共同激发下NaYF4:20%Yb3+ /2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体的(a)上转换发射光谱和(b)红绿比图

    Fig. 8.  (a) The UC emission spectra and (b) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs under 980 nm, 800 nm and simultaneous 980 nm + 800 nm excitation.

    图 9  NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+核壳纳米晶体在(a) 不同980 nm激光功率下, 固定800 nm激光功率为120 mW时和(d) 不同800 nm激光功率下, 固定980 nm激光功率为120 mW时的上转换发射光谱; (b) 和 (e)为其对应的随不同波长激发功率变化的增强因子图; (c) 和 (f) 为其对应的随不同波长激发功率变化的红绿比图

    Fig. 9.  (a), (d) The UC emission spectra, (b), (e) enhancement factor and (c), (f) R/G ratio of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs on the excitation power of 980 nm with the power of 800 nm laser fixed at 120 mW ((a)–(c)) and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+/20%Nd3+ CS NPs on the excitation power of 800 nm with the power of 980 nm laser fixed at 120 mW ((d)–(f)).

    表 1  NaYF4:20%Yb3+/2%Ho3+/12%Ce3+纳米晶体和NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+核壳纳米晶体的上转换红光发射的荧光寿命

    Table 1.  Luminescence lifetimes of NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ NPs and NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:x %Yb3+ (x = 0, 5, 10, 15) CS NPs under 980 nm excitation at 642 nm.

    SamplesLifetime/μs
    a: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+ 208.7 ± 4.7
    b: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4555.4 ± 4.1
    c: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:5%Yb3+667.6 ± 5.7
    d: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:10%Yb3+499.8 ± 1.7
    e: NaYF4:20%Yb3+/2%Ho3+/12%Ce3+@NaYF4:15%Yb3+321.8 ± 1.3
    下载: 导出CSV
  • [1]

    Sivakumar S, van Veggel F C J M, Raudsepp M 2005 J. Am. Chem. Soc. 127 12464Google Scholar

    [2]

    Gong G, Song Y, Tan H H, Xie S W, Zhang C F, Xu L J, Xu J X, Zheng J 2019 Compos. Part B-Eng. 179 107504Google Scholar

    [3]

    Shalav A, Richards B S, Trupke T, Trupke T, Krämer K W, Güdel H U 2005 Appl. Phys. Lett. 86 013505Google Scholar

    [4]

    An M Y, Cui J B, He Q, Wang L Y 2013 J. Mater. Chem. B 1 1333Google Scholar

    [5]

    Li J J, Cheng F F, Huang H P, Li L L, Zhu J J 2015 Chem. Soc. Rev. 44 7855Google Scholar

    [6]

    Zhu Y R, Zhao S W, Zhou B, Zhu H, Wang Y F 2017 J. Phys. Chem. C 121 18909Google Scholar

    [7]

    Chen X, Jin L M, Kong W, Sun T Y, Zhang W F, Zhang X H, Fan J, Yu S F, Wang F 2016 Nat. Commun. 7 10304Google Scholar

    [8]

    Liang Y J, Noh H M, Xue J P, Choi H Y, Park S H, Choi B C, Kim J Y, Jeong J H 2017 Mater. Design. 130 190Google Scholar

    [9]

    Campos-Gonçalvesa I, Costa B F O, Santos R F, Durães L 2017 Mater. Design. 130 263Google Scholar

    [10]

    Szczeszak A, Jurga N, Lis F 2020 Ceram. Int. 46 26382Google Scholar

    [11]

    Rakov N, Maciel G S, Sundheimer M L, Menezes L D S, Gomes A S L, Messaddeq Y, Cassanjes F C, Poirier G, Ribeiro S J L 2002 J. Appl. Phys. 92 6337Google Scholar

    [12]

    Liu Y F, Zhao J, Zhang Y, Zhang H F, Zhang Z L, Gao H P, Mao Y L 2019 J. Alloy. Compd. 810 151761Google Scholar

    [13]

    Huang X Y, Lin J 2015 J. Mater. Chem. C 3 7652Google Scholar

    [14]

    Zhan S P, Xiong J, Nie G Z, Wu S B, Hu J S, Wu X F, Hu S G, Zhang J, Gao Y Y, Liu Y X 2019 Adv. Mater. Interfaces 6 1802089Google Scholar

    [15]

    Li X M, Zhang F, Zhao D Y 2015 Chem. Soc. Rev. 44 1346Google Scholar

    [16]

    Nie Z Y, Ke X X, Li D N, Zhao Y L, Zhu L L, Qiao R, Zhang X L 2019 J. Phys. Chem. C 123 22959Google Scholar

    [17]

    Wang D, Xue B, Kong X G, Tu L P, Liu X M, Zhang Y L, Chang Y L, Luo Y S, Zhao H Y, Zhang H 2015 Nanoscale 7 190Google Scholar

    [18]

    Wang Y F, Liu G Y, Sun L D, Xiao J W, Zhou J C, Yan C H 2013 ACS Nano. 7 7200Google Scholar

    [19]

    Shi Z L, Duan Y, Zhu X J, Wang Q W, Li D D, Hu K, Feng W, Li F Y, Xu C X 2018 Nanotechnology 29 094001Google Scholar

    [20]

    Xu B, Zhang X, Huang W J, Yang Y J, Ma Y, Gu Z J, Zhai T Y, Zhao Y L 2016 J. Mater. Chem. B 4 2776Google Scholar

    [21]

    Cui X S, Cheng Y, Lin H, Wu Q P, Xu J, Wang Y S 2019 J. Rare Earth. 37 573Google Scholar

    [22]

    Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M 2004 J. Appl. Phys. 96 661Google Scholar

    [23]

    Tian G, Gu Z J, Zhou L J, Yin W Y, Liu X X, Yan L, Jin S, Ren W L, Xing G M, Li S J, Zhao Y L 2012 Adv. Mater. 24 1226Google Scholar

    [24]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683Google Scholar

    [25]

    Gao W, Kong X Q, Han Q Y, Chen Y, Zhang J, Zhao X, Yan X W, Liu J H, Shi J, Dong J 2018 J. Lumin. 202 381Google Scholar

    [26]

    严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟 2019 物理学报 68 174204Google Scholar

    Yan X W, Wang Z J, Wang B Y, Sun Z Y, Zhang C X, Han Q Y, Qi J X, Dong J, Gao W 2019 Acta Phys. Sin 68 174204Google Scholar

    [27]

    Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumin. 179 562Google Scholar

    [28]

    Dong J, Zhang J, Han Q Y, Zhao X, Yan X W, Liu J H, Ge H B, Gao W 2019 J. Lumin. 207 361Google Scholar

    [29]

    Gao W, Dong J, Yan X W, Liu L, Liu J H, Zhang W W 2017 J. Lumin. 192 513Google Scholar

    [30]

    Gao W, Wang B Y, Han Q Y, Gao L, Wang Z J, Sun Z Y, Zhang B, Dong J 2020 J. Alloy. Compd. 818 152934Google Scholar

    [31]

    Chen D Q, Liu L, Huang P, Ding M Y, Zhong J S, Ji Z G 2015 J. Phys. Chem. Lett. 6 2833Google Scholar

    [32]

    Li J C, Zhu X J, Xue M, Feng W, Ma R L, Li F Y 2016 Inorg. Chem. 55 10278Google Scholar

    [33]

    Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924Google Scholar

    [34]

    Kuang Y, Xu J T, Wang C, Li T Y, Gai S L, He F, Yang P P 2019 Chem. Mater. 31 7898Google Scholar

    [35]

    Zhao J, Liu Y F, Zhou C P, Gao H P, Zhang H F, Mao Y L 2020 J. Lumin. 219 116936Google Scholar

    [36]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288Google Scholar

    [37]

    Wang J M, Lin H, Cheng Y, Cui X S, Gao Y, Ji Z L, Xu J, Wang Y S 2019 Sensor Actuat. B-Chem. 278 165Google Scholar

    [38]

    Chen Z, Zhang X W, Zeng S F, Liu Z J, Ma Z J, Dong G P, Zhou S F, Liu X F, Qiu J R 2015 Applied Physics Express 8 032301Google Scholar

    [39]

    Zhou J J, Deng J Y, Zhu H M, Chen X Y, Teng Y, Jia H, Xu S Q, Qiu J R 2013 J. Mater. Chem. C 1 8023Google Scholar

    [40]

    Yang Y, Li W W, Mei B C, Song J H, Yi G Q, Zhou Z W, Liu J S 2019 J. Lumin. 213 504Google Scholar

    [41]

    Li P, Guo L N, Zhang Z X, Li T S, Chen P L 2018 Dyes and Pigments 154 242Google Scholar

  • [1] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] 高伟, 张正宇, 张景蕾, 丁鹏, 韩庆艳, 张成云, 严学文, 董军. 基于单颗粒微米核壳晶体的微区上转换发射光谱构筑微纳光子学条形码. 物理学报, 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [3] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理. 物理学报, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [4] 高伟, 邵琳, 韩珊珊, 邢宇, 张晶晶, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 基于单颗粒NaYF4微米棒的上转换白光发射特性. 物理学报, 2023, 72(2): 024207. doi: 10.7498/aps.72.20221606
    [5] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [6] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [7] 高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 单颗粒NaYF4核壳结构的能量传递特性. 物理学报, 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [8] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211719
    [9] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [10] 洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为. 物理学报, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [11] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [12] 张宇文, 邓永和, 文大东, 赵鹤平, 高明. Al原子在Ni基衬底表面的扩散及团簇的形成. 物理学报, 2020, 69(13): 136601. doi: 10.7498/aps.69.20200120
    [13] 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控. 物理学报, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [14] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶. 物理学报, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [15] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射. 物理学报, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [16] 高伟, 董军, 王瑞博, 王朝晋, 郑海荣. Er3+/Yb3+共掺NaYF4/LiYF4微米晶体的上转换荧光特性. 物理学报, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [17] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性. 物理学报, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [18] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究. 物理学报, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [19] 舒明飞, 尚玉黎, 陈威, 曹万强. 核壳结构对弛豫铁电体介电行为的影响. 物理学报, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [20] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
计量
  • 文章访问数:  5537
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 修回日期:  2021-03-23
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回