搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能

方合 王顺利 李立群 李培刚 刘爱萍 唐为华

引用本文:
Citation:

液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能

方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华

Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation

Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua
PDF
导出引用
  • 利用532 nm脉冲激光对沉浸在去离子水及十二烷基硫酸钠(SDS)水溶液中的金属锌靶进行液相激光烧蚀,合成了ZnO纳米颗粒和Zn/ZnO核壳结构的纳米粒子. 应用X射线衍射仪,透射电子显微镜,紫外可见光分光光度计和荧光光度计表征产物的微观结构和光学性能,并探讨其形成机理. 结果表明:在去离子水中分别烧蚀2 h和4 h生成的ZnO纳米粒子的平均粒径分别为43 nm和19 nm. 激光的长时间作用可以使纳米粒子粒径减小. 在0.005 mol/L的SDS水溶液中合成了Zn/ZnO核壳结构的纳米粒子,这是由于S
    ZnO nanoparticles and Zn/ZnO core/shell structured nanoparticles are synthesized by ablating zinc target in deionized water and sodium dodecyl sulfate (SDS) solutions, respectively, using pulsed laser ablation with 532 nm pulsed infrared laser. The microstructures and photoluminescence properties of the products are characterized by X-ray diffraction, transmission electron microscopy, ultraviolet-visible and PL spectrophotometer. The formation mechanism of ZnO and Zn/ZnO nanoparticles is discussed. The results show that the mean diameters of ZnO nanoparticles are 43 nm and 19 nm, respectively, after ablating the zinc target for 2 and 4 hours in deionized water. The longer-time ablation may lead to the interaction of the ablating laser beam with the ZnO nanoparticles, resulting in the decrease of the mean diameter of ZnO. Zn/ZnO core/shell structured nanoparticles can be obtained in 0.005 mol/L SDS solution due to the enwrapping of SDS to the Zn nanoparticles. A blue photoluminescence at about 450 nm (2.76 eV) and a green one at about 558 nm (2.22 eV) are observed for the colloidal solutions of ZnO and Zn/ZnO nanoparticles.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号:2010CB933501),浙江省自然科学基金杰出青年研究团队课题(批准号:R4090058)和浙江省教育厅科研项目(批准号:Y200806012)资助的课题.
    [1]

    Mafune F, Kohno J Y, Takeda Y, Kondow T 2001 J. Phys. Chem. B 105 5114

    [2]

    Zhong M J, Guo G L, Yang J Y, Ma N H, Ye G, Guo X D, Li R X, Ma H L 2008 Chin. Phys. B 17 1223

    [3]

    Li B, Kawakami T, Hiramatsu M 2003 Appl. Surf. Sci. 210 171

    [4]

    Chen J W, Dong Q Z, Yang J, Guo Z X, Song Z L, Lian J S 2004 Mater. Lett. 58 337

    [5]

    Liang C H, Sasaki T, Shimizu Y, Koshizaki N 2004 Chem. Phys. Lett. 389 58

    [6]

    Yang G W 2007 Prog. Mater. Sci. 52 648

    [7]

    Phuoc T X, Howard B H, Martello D V, Soong Y, Chyu M K 2008 Opt. Laser. Eng. 46 829

    [8]

    Liang C H, Shimizu Y, Sasaki T, Koshizaki N 2005 Appl. Phys. A 80 819

    [9]

    Tarasenko N V, Butsen A V, Nevar E A 2005 Appl. Surf. Sci. 247 418

    [10]

    Mafune F, Kohno J Y, Takeda Y, Kondow T 2000 J. Phys. Chem. B 104 9111

    [11]

    Phuoc T X, Soong Y, Chyu M K 2007 Opt. Laser. Eng. 45 1099

    [12]

    Tsuji T, Thang D H, Okazaki Y, Nakanishi M, Tsuboi Y, Tsuji M 2008 Appl. Surf. Sci. 254 5224

    [13]

    Kim H J, Onoe J 2009 Opt. Laser. Eng. 47 532

    [14]

    Kabashin A V, Meunier M, Kingston C, Luong H T 2003 J. Phys. Chem. B 107 4527

    [15]

    Nikolov A S, Atanasov P A, Milev D A, Stoyanchov T A, Deleva A D, Peshev Z Y 2009 Appl. Surf. Sci. 255 5351

    [16]

    Takada N, Nakano T, Sasaki K 2009 Appl. Surf. Sci. 255 9572

    [17]

    Semaltianos N G, Logothetidis S, Perrie W, Romani S, Potter R J, French P, Sharp M, Dearden G Watkins K G 2008 Mat. Sci. Eng. B 9 135

    [18]

    Svrcek V, Kondo M 2009 Appl. Surf. Sci. 255 9643

    [19]

    Nichols W T, Sasaki T, Koshizaki N 2006 J. Appl. Phys. 100 114911

    [20]

    Nichols W T, Sasaki T, Koshizaki N 2006 J. Appl. Phys. 100 114912

    [21]

    Liu P S, Cai W P, Zeng H B 2008 J Phys. Chem. C 112 3261

    [22]

    Chen Y H, Yeh C S 2002 Colloids Surf. A 197 133

    [23]

    Huang C C, Yeh C S, Ho C J 2004 J. Phys. Chem. B 108 4940

    [24]

    Li H, Xie E Q, Zhang H L, Pan X J, Zhang Y Z 2007 Acta Phys. Sin. 56 3584 (in Chinese) [李 晖、谢二庆、张洪亮、潘孝军、张永哲 2007 物理学报 56 3584]

    [25]

    Tang B, Deng H, Shui Z W, Wei M, Chen J J, Hao X 2007 Acta Phys. Sin. 56 5176 (in Chinese) [唐 斌、邓 宏、税正伟、韦 敏、陈金菊、郝 昕 2007 物理学报 56 5176]

    [26]

    Sekiguchi T, Miyashita S, Obara K, Shishido T, Sakagami N 2000 Growth 72 214

    [27]

    Yang L, May P W, Yin L, Scott T B 2007 Nanotechnology 18 215602

    [28]

    He C, Sasaki T, Shimizu Y, Koshizaki N 2008 Appl. Surf. Sci. 254 2196

    [29]

    Usui H, Shimizu Y, Sasaki T, Koshizaki N 2005 J. Phys. Chem. B 109 120

    [30]

    Zeng H B, Liu P S, Cai W P, Cao X L, Yang S K 2007 Cryst. Growth Des. 7 1092

    [31]

    Singh S C, Gopal R 2008 J. Phys. Chem. C 112 2812

    [32]

    Zhang D M, Li Z H, Huang M T, Zhang M J, Guan L, Zou M Q, Zhang Z C 2001 Chin.Phys.Soc. 50 914 (in chinese) [张端明、李智华、黄明涛、张美军、关 丽、邹明清、钟志成 2001 物理学报 50 914]

    [33]

    Ogale S B, Patail P P, Phase D M 1987 Phys. Rev. B 36 8237

    [34]

    Zeng H B, Cai W P, Li Y, Hu J L, Liu P S 2005 J. Phys. Chem. B 109 18260

    [35]

    Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561

  • [1]

    Mafune F, Kohno J Y, Takeda Y, Kondow T 2001 J. Phys. Chem. B 105 5114

    [2]

    Zhong M J, Guo G L, Yang J Y, Ma N H, Ye G, Guo X D, Li R X, Ma H L 2008 Chin. Phys. B 17 1223

    [3]

    Li B, Kawakami T, Hiramatsu M 2003 Appl. Surf. Sci. 210 171

    [4]

    Chen J W, Dong Q Z, Yang J, Guo Z X, Song Z L, Lian J S 2004 Mater. Lett. 58 337

    [5]

    Liang C H, Sasaki T, Shimizu Y, Koshizaki N 2004 Chem. Phys. Lett. 389 58

    [6]

    Yang G W 2007 Prog. Mater. Sci. 52 648

    [7]

    Phuoc T X, Howard B H, Martello D V, Soong Y, Chyu M K 2008 Opt. Laser. Eng. 46 829

    [8]

    Liang C H, Shimizu Y, Sasaki T, Koshizaki N 2005 Appl. Phys. A 80 819

    [9]

    Tarasenko N V, Butsen A V, Nevar E A 2005 Appl. Surf. Sci. 247 418

    [10]

    Mafune F, Kohno J Y, Takeda Y, Kondow T 2000 J. Phys. Chem. B 104 9111

    [11]

    Phuoc T X, Soong Y, Chyu M K 2007 Opt. Laser. Eng. 45 1099

    [12]

    Tsuji T, Thang D H, Okazaki Y, Nakanishi M, Tsuboi Y, Tsuji M 2008 Appl. Surf. Sci. 254 5224

    [13]

    Kim H J, Onoe J 2009 Opt. Laser. Eng. 47 532

    [14]

    Kabashin A V, Meunier M, Kingston C, Luong H T 2003 J. Phys. Chem. B 107 4527

    [15]

    Nikolov A S, Atanasov P A, Milev D A, Stoyanchov T A, Deleva A D, Peshev Z Y 2009 Appl. Surf. Sci. 255 5351

    [16]

    Takada N, Nakano T, Sasaki K 2009 Appl. Surf. Sci. 255 9572

    [17]

    Semaltianos N G, Logothetidis S, Perrie W, Romani S, Potter R J, French P, Sharp M, Dearden G Watkins K G 2008 Mat. Sci. Eng. B 9 135

    [18]

    Svrcek V, Kondo M 2009 Appl. Surf. Sci. 255 9643

    [19]

    Nichols W T, Sasaki T, Koshizaki N 2006 J. Appl. Phys. 100 114911

    [20]

    Nichols W T, Sasaki T, Koshizaki N 2006 J. Appl. Phys. 100 114912

    [21]

    Liu P S, Cai W P, Zeng H B 2008 J Phys. Chem. C 112 3261

    [22]

    Chen Y H, Yeh C S 2002 Colloids Surf. A 197 133

    [23]

    Huang C C, Yeh C S, Ho C J 2004 J. Phys. Chem. B 108 4940

    [24]

    Li H, Xie E Q, Zhang H L, Pan X J, Zhang Y Z 2007 Acta Phys. Sin. 56 3584 (in Chinese) [李 晖、谢二庆、张洪亮、潘孝军、张永哲 2007 物理学报 56 3584]

    [25]

    Tang B, Deng H, Shui Z W, Wei M, Chen J J, Hao X 2007 Acta Phys. Sin. 56 5176 (in Chinese) [唐 斌、邓 宏、税正伟、韦 敏、陈金菊、郝 昕 2007 物理学报 56 5176]

    [26]

    Sekiguchi T, Miyashita S, Obara K, Shishido T, Sakagami N 2000 Growth 72 214

    [27]

    Yang L, May P W, Yin L, Scott T B 2007 Nanotechnology 18 215602

    [28]

    He C, Sasaki T, Shimizu Y, Koshizaki N 2008 Appl. Surf. Sci. 254 2196

    [29]

    Usui H, Shimizu Y, Sasaki T, Koshizaki N 2005 J. Phys. Chem. B 109 120

    [30]

    Zeng H B, Liu P S, Cai W P, Cao X L, Yang S K 2007 Cryst. Growth Des. 7 1092

    [31]

    Singh S C, Gopal R 2008 J. Phys. Chem. C 112 2812

    [32]

    Zhang D M, Li Z H, Huang M T, Zhang M J, Guan L, Zou M Q, Zhang Z C 2001 Chin.Phys.Soc. 50 914 (in chinese) [张端明、李智华、黄明涛、张美军、关 丽、邹明清、钟志成 2001 物理学报 50 914]

    [33]

    Ogale S B, Patail P P, Phase D M 1987 Phys. Rev. B 36 8237

    [34]

    Zeng H B, Cai W P, Li Y, Hu J L, Liu P S 2005 J. Phys. Chem. B 109 18260

    [35]

    Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561

  • [1] 洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为. 物理学报, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [2] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射. 物理学报, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [3] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶. 物理学报, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [4] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射. 物理学报, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [5] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响. 物理学报, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [6] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [7] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究. 物理学报, 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [8] 王英龙, 高建聪, 褚立志, 邓泽超, 丁学成, 梁伟华, 傅广生. 低压下气流对激光沉积纳米硅晶化及尺寸的影响. 物理学报, 2013, 62(2): 025204. doi: 10.7498/aps.62.025204
    [9] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究. 物理学报, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [10] 吴忠浩, 徐明, 段文倩. Fe掺杂对溶胶凝胶法制备的ZnO: Ni薄膜结构及发光特性的影响. 物理学报, 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [11] 吴艳南, 徐明, 吴定才, 董成军, 张佩佩, 纪红萱, 何林. Co,Sn共掺ZnO薄膜结构与光致发光的研究. 物理学报, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [12] 傅广生, 丁学成, 郭瑞强, 翟小林, 褚立志, 邓泽超, 梁伟华, 王英龙. 脉冲激光沉积纳米硅晶粒流体模型的推广. 物理学报, 2011, 60(1): 018102. doi: 10.7498/aps.60.018102
    [13] 邓泽超, 罗青山, 丁学成, 褚立志, 梁伟华, 陈金忠, 傅广生, 王英龙. 脉冲激光烧蚀制备纳米Si晶粒成核气压阈值及动力学研究. 物理学报, 2011, 60(12): 126801. doi: 10.7498/aps.60.126801
    [14] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质. 物理学报, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [15] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [16] 姚志涛, 孙新瑞, 许海军, 姜卫粉, 肖顺华, 李新建. 氧化锌/硅纳米孔柱阵列的结构和光致发光特性研究. 物理学报, 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
    [17] 褚立志, 卢丽芳, 王英龙, 傅广生. 脉冲激光烧蚀制备纳米Si晶粒成核区位置的确定. 物理学报, 2007, 56(6): 3374-3378. doi: 10.7498/aps.56.3374
    [18] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [19] 王英龙, 周 阳, 褚立志, 傅广生, 彭英才. Ar环境气压对脉冲激光烧蚀制备纳米Si晶粒平均尺寸的影响. 物理学报, 2005, 54(4): 1683-1686. doi: 10.7498/aps.54.1683
    [20] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
计量
  • 文章访问数:  7049
  • PDF下载量:  763
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-07
  • 修回日期:  2010-12-22
  • 刊出日期:  2011-09-15

液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能

  • 1. 浙江理工大学,光电材料与器件中心,杭州 310018
    基金项目: 国家重点基础研究发展计划(973计划)(批准号:2010CB933501),浙江省自然科学基金杰出青年研究团队课题(批准号:R4090058)和浙江省教育厅科研项目(批准号:Y200806012)资助的课题.

摘要: 利用532 nm脉冲激光对沉浸在去离子水及十二烷基硫酸钠(SDS)水溶液中的金属锌靶进行液相激光烧蚀,合成了ZnO纳米颗粒和Zn/ZnO核壳结构的纳米粒子. 应用X射线衍射仪,透射电子显微镜,紫外可见光分光光度计和荧光光度计表征产物的微观结构和光学性能,并探讨其形成机理. 结果表明:在去离子水中分别烧蚀2 h和4 h生成的ZnO纳米粒子的平均粒径分别为43 nm和19 nm. 激光的长时间作用可以使纳米粒子粒径减小. 在0.005 mol/L的SDS水溶液中合成了Zn/ZnO核壳结构的纳米粒子,这是由于S

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回