搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低压下气流对激光沉积纳米硅晶化及尺寸的影响

王英龙 高建聪 褚立志 邓泽超 丁学成 梁伟华 傅广生

引用本文:
Citation:

低压下气流对激光沉积纳米硅晶化及尺寸的影响

王英龙, 高建聪, 褚立志, 邓泽超, 丁学成, 梁伟华, 傅广生

Influence of gas flow on the size and crystal of silicon nanoparticle produced by laser deposition in low pressure

Wang Ying-Long, Gao Jian-Cong, Chu Li-Zhi, Deng Ze-Chao, Ding Xue-Cheng, Liang Wei-Hua, Fu Guang-Sheng
PDF
导出引用
  • 纳米硅具有明显的光致发光效应和量子尺寸效应, 广泛的应用在现代电子工业和太阳能光伏工业中. 尺寸影响着纳米硅的实际用途, 因此制备尺寸可控的纳米硅晶粒具有很重要的实际意义. 本文采用脉冲激光沉积(PLD)技术, 在烧蚀点水平方向、距靶2 cm处引入一束流量为5 sccm的氩(Ar)气流, 在0.01–0.5 Pa的Ar气压下烧蚀高阻抗单晶硅(Si)靶. 在管口正下方1 cm处水平放置衬底来沉积纳米Si薄膜; 并用同一装置, 在0.08 Pa的Ar气压下分别引入流量为0, 2.5, 5, 7.5, 10 sccm的Ar气流沉积纳米Si薄膜. 利用原子力显微镜(AFM)、X射线衍射(XRD)、Raman散射对样品表面形貌和微观结构进行分析表征. 结果表明: 不引入气流时出现纳米Si晶粒的阈值气压是0.1 Pa, 引入气流后出现纳米Si晶粒的阈值气压为0.05 Pa. 晶粒尺寸随着气流流量的增大而减小.
    The nanocrystal silicon films were prepared by using a pulsed laser to ablate a high-resistivity single crystalline Si target in an ambient pressure range of 0.01-0.5 Pa of pure argon gas. An argon gas flow is introduced in the horizontal direction of the ablation point in an axial range of 2 cm. Nanocrystal Si films are deposited on glass or single crystalline (111) Si substrates placed at a distance of 1 cm below the nozzle. Then the same device is used to prepare the ranocrystal Si films at a pressure of 0.08 Pa with gas flow being, respectively, 0, 2.5, 5, 7.5, 10 sccm. The morphologies and microstructurs of the samples are characterized by atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman scattering. The results show that the Si nanocrystal threshold pressure is 0.1 Pa without gasflow, and 0.05 Pa with gasflow. The size of Si nanocrystal decreases as the gasflow increases.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB612305)、河北省高等学校科学研究项目(批准号: Q2012084)和河北省自然科学基金(批准号: E2011201134, E2012201035)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No: 2011CB612305), the Research Project of Colleges and University of Hebei Province (Grant No. Q2012084), and the Natural Science Foundation of Hebei Province (Grant Nos: E2011201134, E2012201035).
    [1]

    Canham L T 1990 Appl. Phys. Lett. 57 1046

    [2]

    Zhu S W, Wang L, Chen X, Tu H L, Du J 2010 Chinese J. Lasers 37 882 (in Chinese) [朱世伟, 王磊, 陈兴, 屠海令, 杜军 2010 中国激光 37 882]

    [3]

    Song C, Chen G R, Xu J, Wang T, Sun H C, Liu Y, Li W, Chen K J 2009 Acta Phys. Sin. 58 7878 (in Chinese) [宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基 2009 物理学报 58 7878]

    [4]

    Liu Y S, Chen K, Qiao F, Huang X F, Han P G, Qian B, Ma Z Y, Li W, Xu J, Chen K J 2006 Acta Phys. Sin. 55 5404 (in Chinese) [刘艳松, 陈铠, 乔峰, 黄信凡, 韩培高, 钱波, 马忠元, 李伟, 徐骏, 陈坤基 2006 物理学报 55 5404]

    [5]

    Ratto F, Locatelli A, Fontana S, Kharrazi S, Kulkarni S K, Heun S, Rosei F 2006 Phys. Rev. Lett. 96 1031

    [6]

    Gao H, Liao L Z, Zhang Z H 2009 Acta Phys. Sin. 58 0427 (in Chinese) [高皓, 廖龙忠, 张朝晖 2009 物理学报 58 0427]

    [7]

    Nichols W T, Malyavanatham G, Hennke D E, Brock J R, Becker M F, Keto J W, Glicksman H D 2000 J. Nanopart Res. 2 141

    [8]

    Nakata Y, Muramoto J, Okada T Maeda M 2002 J. Appl. Phys. 91 1640

    [9]

    Wang Y L, Zhang H S, Chu L Z, Ding X C, Fu G S 2008 J. Mater. Eng. 10 0248

    [10]

    Wu H P, Okano A, Takayanagi K 2000 Appl. Phys. A 71 643

    [11]

    Chu L Z, Lu L F, Wang Y L, Fu G S 2007 Acta Phys. Sin. 56 3374 (in Chinese) [褚立志, 卢丽芳, 王英龙, 傅广生 2007 物理学报 56 3374]

    [12]

    Deng Z C, Luo Q S, Ding X C, Chu L Z, Liang W H, Chen J Z, Fu G S, Wang Y L 2011 Chinese J. Lasers 38 145 (in Chinese) [邓泽超, 罗青山, 丁学成, 褚立志, 梁伟华, 陈金忠, 傅广生 2011 中国激光 38 145]

    [13]

    Wang Y L, Deng Z C, Chu L Z, Fu G S, Peng Y C 2009 Euro. Phys. Lett. 86 15001

    [14]

    Wang Y L, Luo Q S, Deng Z C, Chu L Z, Ding X C, Liang W H, Chen C, Fu G S 2010 High Power Laser and Particle Beams 22 2199 (in Chinese)[王英龙, 罗青山, 邓泽超, 褚立志, 丁学成, 梁伟华, 陈超, 傅广生 2010 强激光与粒子束 22 2199]

  • [1]

    Canham L T 1990 Appl. Phys. Lett. 57 1046

    [2]

    Zhu S W, Wang L, Chen X, Tu H L, Du J 2010 Chinese J. Lasers 37 882 (in Chinese) [朱世伟, 王磊, 陈兴, 屠海令, 杜军 2010 中国激光 37 882]

    [3]

    Song C, Chen G R, Xu J, Wang T, Sun H C, Liu Y, Li W, Chen K J 2009 Acta Phys. Sin. 58 7878 (in Chinese) [宋超, 陈谷然, 徐骏, 王涛, 孙红程, 刘宇, 李伟, 陈坤基 2009 物理学报 58 7878]

    [4]

    Liu Y S, Chen K, Qiao F, Huang X F, Han P G, Qian B, Ma Z Y, Li W, Xu J, Chen K J 2006 Acta Phys. Sin. 55 5404 (in Chinese) [刘艳松, 陈铠, 乔峰, 黄信凡, 韩培高, 钱波, 马忠元, 李伟, 徐骏, 陈坤基 2006 物理学报 55 5404]

    [5]

    Ratto F, Locatelli A, Fontana S, Kharrazi S, Kulkarni S K, Heun S, Rosei F 2006 Phys. Rev. Lett. 96 1031

    [6]

    Gao H, Liao L Z, Zhang Z H 2009 Acta Phys. Sin. 58 0427 (in Chinese) [高皓, 廖龙忠, 张朝晖 2009 物理学报 58 0427]

    [7]

    Nichols W T, Malyavanatham G, Hennke D E, Brock J R, Becker M F, Keto J W, Glicksman H D 2000 J. Nanopart Res. 2 141

    [8]

    Nakata Y, Muramoto J, Okada T Maeda M 2002 J. Appl. Phys. 91 1640

    [9]

    Wang Y L, Zhang H S, Chu L Z, Ding X C, Fu G S 2008 J. Mater. Eng. 10 0248

    [10]

    Wu H P, Okano A, Takayanagi K 2000 Appl. Phys. A 71 643

    [11]

    Chu L Z, Lu L F, Wang Y L, Fu G S 2007 Acta Phys. Sin. 56 3374 (in Chinese) [褚立志, 卢丽芳, 王英龙, 傅广生 2007 物理学报 56 3374]

    [12]

    Deng Z C, Luo Q S, Ding X C, Chu L Z, Liang W H, Chen J Z, Fu G S, Wang Y L 2011 Chinese J. Lasers 38 145 (in Chinese) [邓泽超, 罗青山, 丁学成, 褚立志, 梁伟华, 陈金忠, 傅广生 2011 中国激光 38 145]

    [13]

    Wang Y L, Deng Z C, Chu L Z, Fu G S, Peng Y C 2009 Euro. Phys. Lett. 86 15001

    [14]

    Wang Y L, Luo Q S, Deng Z C, Chu L Z, Ding X C, Liang W H, Chen C, Fu G S 2010 High Power Laser and Particle Beams 22 2199 (in Chinese)[王英龙, 罗青山, 邓泽超, 褚立志, 丁学成, 梁伟华, 陈超, 傅广生 2010 强激光与粒子束 22 2199]

计量
  • 文章访问数:  2242
  • PDF下载量:  547
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-11
  • 修回日期:  2012-08-27
  • 刊出日期:  2013-01-05

低压下气流对激光沉积纳米硅晶化及尺寸的影响

  • 1. 河北大学物理科学与技术学院, 保定 071002
    基金项目: 

    国家重点基础研究发展计划(批准号: 2011CB612305)、河北省高等学校科学研究项目(批准号: Q2012084)和河北省自然科学基金(批准号: E2011201134, E2012201035)资助的课题.

摘要: 纳米硅具有明显的光致发光效应和量子尺寸效应, 广泛的应用在现代电子工业和太阳能光伏工业中. 尺寸影响着纳米硅的实际用途, 因此制备尺寸可控的纳米硅晶粒具有很重要的实际意义. 本文采用脉冲激光沉积(PLD)技术, 在烧蚀点水平方向、距靶2 cm处引入一束流量为5 sccm的氩(Ar)气流, 在0.01–0.5 Pa的Ar气压下烧蚀高阻抗单晶硅(Si)靶. 在管口正下方1 cm处水平放置衬底来沉积纳米Si薄膜; 并用同一装置, 在0.08 Pa的Ar气压下分别引入流量为0, 2.5, 5, 7.5, 10 sccm的Ar气流沉积纳米Si薄膜. 利用原子力显微镜(AFM)、X射线衍射(XRD)、Raman散射对样品表面形貌和微观结构进行分析表征. 结果表明: 不引入气流时出现纳米Si晶粒的阈值气压是0.1 Pa, 引入气流后出现纳米Si晶粒的阈值气压为0.05 Pa. 晶粒尺寸随着气流流量的增大而减小.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回