搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气流对微秒脉冲滑动放电特性的影响

牛宗涛 章程 马云飞 王瑞雪 陈根永 严萍 邵涛

引用本文:
Citation:

气流对微秒脉冲滑动放电特性的影响

牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛

Effect of flow rate on the characteristics of repetitive microsecond-pulse gliding discharges

Niu Zong-Tao, Zhang Cheng, Ma Yun-Fei, Wang Rui-Xue, Chen Gen-Yong, Yan Ping, Shao Tao
PDF
导出引用
  • 脉冲电源驱动的滑动放电能够在大气压下产生高能量、高功率密度的低温等离子体. 为了研究微秒脉冲电源在针-针电极结构中产生滑动放电的特征, 本文采用电压幅值为030 kV, 脉冲宽度约8 s, 脉冲重复频率为13000 Hz的微秒脉冲电源, 通过测量电压、电流波形和拍摄放电图像, 研究了微秒脉冲滑动放电的电特性. 实验结果表明, 随着施加电压的增加微秒脉冲滑动放电存在三种典型的放电模式: 电晕放电、弥散放电和类滑动放电. 不同放电模式的电压、电流波形和放电图像之间差异显著. 脉冲重复频率对微秒脉冲滑动放电特性有影响, 表现为当气体流量较小(2 L/min)时, 类滑动放电的放电通道随着脉冲重复频率的增大逐渐集中, 而当气体流量较大(16 L/min)时, 类滑动放电的放电通道随着脉冲重复频率的增大逐渐分散. 不同气流下重复频率对滑动放电特性的影响与放电中粒子的记忆效应和气流的状态有关.
    Gliding discharges driven by microsecond-pulse power supply can generate non-thermal plasmas with high energy and high power density at atmospheric pressure. However, the flowing air significantly influences the characteristics of the microsecond-pulse gliding discharges in a repetitive mode. In this paper, in order to obtain the characteristics of the microsecond-pulse gliding discharges in a needle-to-needle gap, a microsecond-pulse power supply with an output voltage up to 30 kV, a pulse width 8 s, and a pulse repetition frequencies 1 Hz 3000 Hz is used to investigate the electrical characteristics of gliding discharges by analyzing the voltage-current waveforms and obtaining the discharge images. Experimental results show that there are three typical discharge modes in the microsecond-pulse gliding discharges as the applied voltage increases, i.e. corona discharge, diffuse discharge, and gliding-like discharge. Both voltage-current waveforms and the discharge images at different discharge modes have significantly different behaviors. Corona discharge only exists near the positive electrode with a small radius of curvature. Diffuse discharges behave as the overlapped plasma channels bridge the entire gap. The channel of diffuse discharge is full of gap, which starts from the positive electrode, spreads in all directions, and ends at the negative electrode. Gliding-like discharge behaves as a continuous spark channeling, showing a continuous spark, which is discharging strongly and influenced by flow rates. Furthermore, both pulse repetition frequency (PRF) and flow rate remarkably affects the characteristics of microsecond-pulse gliding discharges. When the flow rate is small (2 L/min), the spark channels of gliding-like discharge gradually concentrate with the increase of the PRF. However, when the flow rate is larger (16 L/min), the spark channels of gliding-like discharge behave dispersively when the PRF increases. In our opinion, different characteristics of microsecond-pulse gliding discharge at different flow rates are closely related to the memory effect of the residual particles in the discharges and the state of the air flow. When the flow rate is small (2 L/min), the air flow is stable, and the discharge is generated in a laminar flow state. In this case, the memory effect of particles in repetitive microsecond-pulse gliding discharges dominates the formation of the discharges. These particles could enhance the electric field strength for the next pulse. Because the time interval between two pulses at high PRF is shorter than that at low PRF, there are fewer particles leaving the air gap at high PRF. Thus, memory effect is more significant at high PRF. As a result, the channel of spark discharge concentrates with the increase of the PRF. When the flow rate increases to 16 L/min, the calculated Reynolds number increases to 2864, indicating the transition from laminar state to turbulence state. The residual particles are more likely to escape from the gap. Thus, memory effect slightly affects the characteristics of the microsecond-pulse gliding discharges. In this case, the state of the air flow dominates the formation of the discharge. The spark channels spread towards the top in the direction of the gas flow, making the region of the spark channels gradually disperse as the PRF increases.
      Corresponding author: Zhang Cheng, zhangcheng@mail.iee.ac.cn;st@mail.iee.ac.cn ; Shao Tao, zhangcheng@mail.iee.ac.cn;st@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51222701, 51477164).
    [1]

    Mutaf Y O, Saveliev A V, Fridman A A, Kennedy L A 2000 J. Appl. Phys. 87 041632

    [2]

    Zhu J J, Sun Z W, Li Z S, Ehn A, Aldn M, Salewski M, Leipold F, Kusano Y 2014 J. Phys. D: Appl. Phys. 47 295203

    [3]

    Korolev Y D, Frants O B, Geyman V G, Landl N V, Kasyanov V S 2011 IEEE Trans. Plasma Sci. 39 123319

    [4]

    Ni M, Yu L, Li X, Tu X, Wang Y, Yan J 2011 Acta Phys. Sin. 60 015101(in Chinese) [倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华 2011 物理学报 60 015101]

    [5]

    Czernichowski A 1994 Pure Appl. Chem. 66 061301

    [6]

    Du C M, Yan J H 2007 IEEE Trans. Plasma Sci. 35 061648

    [7]

    Fridman A, Gutsol A, Gangoli S, Ju Y, Ombrello T 2008 J. Propul. Power 24 061216

    [8]

    Kalra C S, Gutsol A F, Fridman A A 2005 IEEE Trans. Plasma Sci. 33 0132

    [9]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf Y O 1998 Prog. Energ. Combust. 25 0211

    [10]

    Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A, Cho Y I 2014 Desalination 345 64

    [11]

    Nunnally T, Tsangaris A, Rabinovich A, Nirenberg G, Chernets I, Fridman A 2014 Int. J. Hydrogen Energ. 39 2311976

    [12]

    Zhang C, Shao T, Xu J, Ma H, Duan L, Ren C, Yan, P 2012 IEEE Trans. Plasma Sci. 40 112843

    [13]

    Xu J, Zhang C, Shao T, Duan L, Ren C, Yan P 2012 High Voltage Engineering 38 071803 (in Chinese) [许家雨, 章程, 邵涛, 段立伟, 任成燕, 严萍 2012 高电压技术 38 071803]

    [14]

    Zhu J, Gao J, Li Z, Ehn A, Aldn M, Larsson A, Kusano Y 2014 Appl. Phys. Lett. 105 234102

    [15]

    Shao T, Zhang C, Long K, Wang J, Zhang D, Yan P 2010 Chin. Phys. B 19 040601

    [16]

    Zhang C, Shao T, Niu Z, Zhang D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202(in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 物理学报 61 035202]

    [17]

    Shao T, Tarasenko V F, Yang W, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Plasma Sources Sci. Technol. 23 054018

    [18]

    Shao T, Yang W, Zhang C, Niu Z, Yan P, Schamiloglu E 2014 Appl. Phys. Lett. 105 071607

    [19]

    Shao T, Huang W, Li W, Zhang C, Zhou Y, Yan P, Schamiloglu, E 2014 IEEE Trans. Plasma Sci. 42 061721

    [20]

    Zhang C, Ma H, Shao Tao, Xie Q, Yang W, Yan P 2014 Acta Phys. Sin. 63 085208(in Chinese) [章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 63 085208]

    [21]

    Pai D Z, Stancu G D, Lacoste D A, Laux C O 2009 Plasma Sources Sci. Technol. 18 045030

    [22]

    Pai D Z, Lacoste D A, Laux C O 2010 Plasma Sources Sci. Technol. 19 065015

    [23]

    Stauss S, Pai D Z, Shizuno T, Terashima K 2014 IEEE Trans. Plasma Sci. 42 06159

    [24]

    Pai D Z, Lacoste D A, Laux C O 2010 J. Appl. Phys. 107 093303

    [25]

    Korolev Y D, Frants O B, Landl N V, Bolotov A V, Nekhoroshev V O 2014 Plasma Sources Sci. Technol. 23 054016

    [26]

    Zhang C, Shao T, Yan P, Zhou Y 2014 Plasma Sources Sci. Technol. 23 035004

    [27]

    Zhang C, Shao T, Ma H, Ren C, Yan P, Zhou Y 2014 IEEE Trans. Plasma Sci. 42 102354

    [28]

    Liu X, He W, Yang F, Wang H, Liao R, Xiao H 2012 Chin. Phys. B 21 075201

    [29]

    Zhang C, Shao T, Yan P 2014 Chinese Science Bulletin 59 201919 (in Chinese) [章程, 邵涛, 严萍 2014 科学通报 59 201919]

    [30]

    Zhang H, Li F, Cao Y, Kunugi T, Yu B 2013 Chin. Phys. B 22 024703

  • [1]

    Mutaf Y O, Saveliev A V, Fridman A A, Kennedy L A 2000 J. Appl. Phys. 87 041632

    [2]

    Zhu J J, Sun Z W, Li Z S, Ehn A, Aldn M, Salewski M, Leipold F, Kusano Y 2014 J. Phys. D: Appl. Phys. 47 295203

    [3]

    Korolev Y D, Frants O B, Geyman V G, Landl N V, Kasyanov V S 2011 IEEE Trans. Plasma Sci. 39 123319

    [4]

    Ni M, Yu L, Li X, Tu X, Wang Y, Yan J 2011 Acta Phys. Sin. 60 015101(in Chinese) [倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华 2011 物理学报 60 015101]

    [5]

    Czernichowski A 1994 Pure Appl. Chem. 66 061301

    [6]

    Du C M, Yan J H 2007 IEEE Trans. Plasma Sci. 35 061648

    [7]

    Fridman A, Gutsol A, Gangoli S, Ju Y, Ombrello T 2008 J. Propul. Power 24 061216

    [8]

    Kalra C S, Gutsol A F, Fridman A A 2005 IEEE Trans. Plasma Sci. 33 0132

    [9]

    Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf Y O 1998 Prog. Energ. Combust. 25 0211

    [10]

    Wright K C, Kim H S, Cho D J, Rabinovich A, Fridman A, Cho Y I 2014 Desalination 345 64

    [11]

    Nunnally T, Tsangaris A, Rabinovich A, Nirenberg G, Chernets I, Fridman A 2014 Int. J. Hydrogen Energ. 39 2311976

    [12]

    Zhang C, Shao T, Xu J, Ma H, Duan L, Ren C, Yan, P 2012 IEEE Trans. Plasma Sci. 40 112843

    [13]

    Xu J, Zhang C, Shao T, Duan L, Ren C, Yan P 2012 High Voltage Engineering 38 071803 (in Chinese) [许家雨, 章程, 邵涛, 段立伟, 任成燕, 严萍 2012 高电压技术 38 071803]

    [14]

    Zhu J, Gao J, Li Z, Ehn A, Aldn M, Larsson A, Kusano Y 2014 Appl. Phys. Lett. 105 234102

    [15]

    Shao T, Zhang C, Long K, Wang J, Zhang D, Yan P 2010 Chin. Phys. B 19 040601

    [16]

    Zhang C, Shao T, Niu Z, Zhang D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202(in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 物理学报 61 035202]

    [17]

    Shao T, Tarasenko V F, Yang W, Beloplotov D V, Zhang C, Lomaev M I, Yan P, Sorokin D A 2014 Plasma Sources Sci. Technol. 23 054018

    [18]

    Shao T, Yang W, Zhang C, Niu Z, Yan P, Schamiloglu E 2014 Appl. Phys. Lett. 105 071607

    [19]

    Shao T, Huang W, Li W, Zhang C, Zhou Y, Yan P, Schamiloglu, E 2014 IEEE Trans. Plasma Sci. 42 061721

    [20]

    Zhang C, Ma H, Shao Tao, Xie Q, Yang W, Yan P 2014 Acta Phys. Sin. 63 085208(in Chinese) [章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍 2014 物理学报 63 085208]

    [21]

    Pai D Z, Stancu G D, Lacoste D A, Laux C O 2009 Plasma Sources Sci. Technol. 18 045030

    [22]

    Pai D Z, Lacoste D A, Laux C O 2010 Plasma Sources Sci. Technol. 19 065015

    [23]

    Stauss S, Pai D Z, Shizuno T, Terashima K 2014 IEEE Trans. Plasma Sci. 42 06159

    [24]

    Pai D Z, Lacoste D A, Laux C O 2010 J. Appl. Phys. 107 093303

    [25]

    Korolev Y D, Frants O B, Landl N V, Bolotov A V, Nekhoroshev V O 2014 Plasma Sources Sci. Technol. 23 054016

    [26]

    Zhang C, Shao T, Yan P, Zhou Y 2014 Plasma Sources Sci. Technol. 23 035004

    [27]

    Zhang C, Shao T, Ma H, Ren C, Yan P, Zhou Y 2014 IEEE Trans. Plasma Sci. 42 102354

    [28]

    Liu X, He W, Yang F, Wang H, Liao R, Xiao H 2012 Chin. Phys. B 21 075201

    [29]

    Zhang C, Shao T, Yan P 2014 Chinese Science Bulletin 59 201919 (in Chinese) [章程, 邵涛, 严萍 2014 科学通报 59 201919]

    [30]

    Zhang H, Li F, Cao Y, Kunugi T, Yu B 2013 Chin. Phys. B 22 024703

  • [1] 肖凯博, 郑建刚, 蒋新颖, 蒋学君, 吴文龙, 严雄伟, 王振国, 郑万国. 高重复频率水冷Nd:YAG激活镜放大器的温度特性. 物理学报, 2021, 70(3): 034203. doi: 10.7498/aps.70.20201042
    [2] 雷健平, 何立明, 陈一, 陈高成, 赵兵兵, 赵志宇, 张华磊, 邓俊, 费力. 旋转滑动弧放电等离子体滑动放电模式的实验研究. 物理学报, 2020, 69(19): 195203. doi: 10.7498/aps.69.20200672
    [3] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪. 双重复频率锁模Yb:YAG陶瓷激光器. 物理学报, 2018, 67(9): 094206. doi: 10.7498/aps.67.20172345
    [4] 刘艺, 杨佳, 李兴, 谷伟, 高志鹏. 微秒脉冲电场下Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3陶瓷击穿过程电阻变化规律. 物理学报, 2017, 66(11): 117701. doi: 10.7498/aps.66.117701
    [5] 谢仕永, 张小富, 乐小云, 杨程亮, 薄勇, 王鹏远, 许祖彦. 885nm双端泵准连续微秒脉冲1319nm三镜环形腔激光. 物理学报, 2016, 65(15): 154205. doi: 10.7498/aps.65.154205
    [6] 彭汉, 刘彬, 付松年, 张敏明, 刘德明. 高速线性光采样用被动锁模光纤激光器重复频率优化. 物理学报, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [7] 刘欢, 巩马理, 曹士英, 林百科, 方占军. 303MHz高重复频率掺Er光纤飞秒激光器. 物理学报, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [8] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [9] 贾石, 于晋龙, 王菊, 王子雄, 陈斌. 重复频率可调谐的超低抖动光窄脉冲源的研究. 物理学报, 2015, 64(18): 184201. doi: 10.7498/aps.64.184201
    [10] 车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引. 亚微秒脉冲表面介质阻挡放电等离子体诱导连续漩涡的研究. 物理学报, 2013, 62(22): 224702. doi: 10.7498/aps.62.224702
    [11] 章程, 邵涛, 牛铮, 张东东, 王珏, 严萍. 大气压尖板电极结构重复频率纳秒脉冲放电中X射线辐射特性研究. 物理学报, 2012, 61(3): 035202. doi: 10.7498/aps.61.035202
    [12] 韩敬华, 冯国英, 杨李茗, 张秋慧, 傅玉青, 牛瑞华, 朱启华, 谢旭东, 周寿桓. 高重复频率激光脉冲光束大小对吸收玻璃损伤特征的影响. 物理学报, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [13] 刘华刚, 胡明列, 刘博文, 宋有建, 柴路, 王清月. 高功率高重复频率多波长飞秒激光系统的研究. 物理学报, 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [14] 张秋慧, 冯国英, 韩敬华, 李彬厚, 谢旭东, 朱启华. 以一定重复频率工作的KTP倍频效率的演化规律. 物理学报, 2010, 59(8): 5533-5540. doi: 10.7498/aps.59.5533
    [15] 严雄伟, 於海武, 曹丁象, 李明中, 蒋东镔, 蒋新颖, 段文涛, 徐美健. 脉冲储能型重复频率Yb:YAG片状激光放大器ASE效应研究. 物理学报, 2009, 58(6): 4230-4238. doi: 10.7498/aps.58.4230
    [16] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [17] 夏婷婷, 钟建伟, 毛邦宁, 陈 钢, 姚志欣, 潘佰良. 高重复率脉冲放电金属蒸气激光中电泳对金属蒸气分布的影响. 物理学报, 2006, 55(1): 202-205. doi: 10.7498/aps.55.202
    [18] 潘佰良, 姚志欣, 陈钢, 方本民. 脉冲放电激励的钡蒸气激光的研究. 物理学报, 2002, 51(2): 259-261. doi: 10.7498/aps.51.259
    [19] 马海明, 李富铭. 砷化镓中微微秒光脉冲的自透射. 物理学报, 1989, 38(9): 1530-1533. doi: 10.7498/aps.38.1530
    [20] 江兴流, 陈克凡, 朴禹伯. 新型毫微秒强流脉冲电子束和离子束发生装置. 物理学报, 1983, 32(10): 1344-1348. doi: 10.7498/aps.32.1344
计量
  • 文章访问数:  2634
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-30
  • 修回日期:  2015-05-14
  • 刊出日期:  2015-10-05

气流对微秒脉冲滑动放电特性的影响

    基金项目: 国家自然科学基金(批准号: 51222701, 51477164)资助的课题.

摘要: 脉冲电源驱动的滑动放电能够在大气压下产生高能量、高功率密度的低温等离子体. 为了研究微秒脉冲电源在针-针电极结构中产生滑动放电的特征, 本文采用电压幅值为030 kV, 脉冲宽度约8 s, 脉冲重复频率为13000 Hz的微秒脉冲电源, 通过测量电压、电流波形和拍摄放电图像, 研究了微秒脉冲滑动放电的电特性. 实验结果表明, 随着施加电压的增加微秒脉冲滑动放电存在三种典型的放电模式: 电晕放电、弥散放电和类滑动放电. 不同放电模式的电压、电流波形和放电图像之间差异显著. 脉冲重复频率对微秒脉冲滑动放电特性有影响, 表现为当气体流量较小(2 L/min)时, 类滑动放电的放电通道随着脉冲重复频率的增大逐渐集中, 而当气体流量较大(16 L/min)时, 类滑动放电的放电通道随着脉冲重复频率的增大逐渐分散. 不同气流下重复频率对滑动放电特性的影响与放电中粒子的记忆效应和气流的状态有关.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回