搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热注射法合成用于生物成像的核壳上转换纳米晶

刘蓓 陆奚建 刘晓宁 吴一品 邹斌

引用本文:
Citation:

热注射法合成用于生物成像的核壳上转换纳米晶

刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌

Hot injection synthesis of core-shell upconversion nanoparticles for bioimaging application

Liu Bei, Lu Xi-Jian, Liu Xiao-Ning, Wu Yi-Pin, Zou Bin
PDF
HTML
导出引用
  • 近几年来, 稀土上转换发光纳米材料凭借其生物组织穿透深度大、无组织损伤、无背景荧光干扰和成像灵敏度高等诸多优点, 在生物体荧光成像领域展现了巨大的潜在应用价值. 本文采用“一次热注射”高温溶剂热法制备不同壳层厚度的NaYF4:Yb, Tm@NaYF4上转换发光材料. 利用透射电子显微镜、粒径分析、荧光光谱等对产物进行表征, 探讨壳层厚度对纳米粒子上转换发光强度的影响. 结果表明, 在980 nm近红外光照射下, 上转换纳米材料能够发出紫外-可见光. 而且, 由于壳层包覆有效抑制了上转换发光的表面猝灭效应, 核壳结构的NaYF4:Yb, Tm@NaYF4纳米粒子发光强度比NaYF4:Yb, Tm提高了数十倍; 当壳层厚度为22.7 nm时, 上转换发光强度最强. 此外, 通过对上转换发光颗粒进行酸洗和聚乙二醇(PEG)修饰, 提高了纳米材料的生物相容性, 并成功将其应用于细胞的上转换荧光成像.
    In recent years, lanthanide-containing upconversion nanoparticles (UCNPs) have aroused the extensive interest in bioimaging due to their unique upconversion fluorescent properties, such as the high tissue penetration depth, good biocompatibility, low auto-fluorescence, and high imaging sensitivity. In this work, we synthesize a series of NaYF4:Yb, Tm@NaYF4 core-shell structured nanoparticles with various shell thicknesses. A “hot injection” strategy is introduced to fabricate the core-shell UCNPs through using high boiling-point mixtures (sodium/rare-earth trifluoroacetates dissolved in oleic acid and octadecene at 150 °C) as shell precursor solutions. The as-synthesized UCNPs are characterized by transmission electron microscope, particle size analysis and fluorescence spectra. The experimental results show that the shell thickness of UCNPs can be well controlled within a range from 4.2 nm to 32.6 nm by simply tuning the added quantity of the shell precursors. Meanwhile, the upconversion luminescence intensity of NaYF4:Yb, Tm@NaYF4 shows tens times higher than that of NaYF4:Yb, Tm owing to the effective suppression of surface quenching. The optimized thickness of the shell is determined to be 22.7 nm. An ultrathick inert shell (>22.7 nm) is not beneficial to upconversion luminescence mainly due to a strong scattering effect. In addition, the in vitro upconversion luminescent bioimaging application is demonstrated by using the as-synthesized core-shell structured UCNPs. Typically, the prepared OA capped UCNPs are dispersed in HCl solution to obtain hydrophilic ones, followed by polyethylene glycol (PEG) modification to improve their biological compatibility. The hydrophilic NaYF4:Yb, Tm@NaYF4@PEG nanostructures (denoted as UCNP@PEG) show a good biocompatibility with HeLa cells, as the viability of HeLa cells do not decrease obviously when the concentration of UCNP@PEG increases to 0.2 mg/mL. Then, we evaluate the upconversion luminescent signals of UCNP@PEG in HeLa cells under the excitation of 980 nm laser. An obviously increasing upconversion luminescent signal can be observed in HeLa cells with the incubation time increasing from 0.5 h to 6.0 h, indicating that the UCNP@PEG can be used as an excellent luminescence probe for cell imaging and monitoring the cell endocytosis process. All in all, we offer an efficient “hot injection” strategy of fabricating the core-shell structured UCNPs with various shell thickness for improving the upconversion efficiency of UCNPs, which will pave the way for new bioimaging and medical applications.
      通信作者: 邹斌, zoubin@muc.edu.cn
    • 基金项目: 国家级-国家自然科学基金 青年基金(21805060)
      Corresponding author: Zou Bin, zoubin@muc.edu.cn
    [1]

    Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D 2018 Nat. Commun. 9 2415Google Scholar

    [2]

    Chen Q, Xie X, Huang B, Liang L, Han S, Yi Z, Liu X 2017 Angew. Chem. 129 7713Google Scholar

    [3]

    Li X, Zhang F, Zhao D 2013 Nano Today 8 643Google Scholar

    [4]

    Li X, Zhang F, Zhao D 2015 Chem. Soc. Rev. 44 1346Google Scholar

    [5]

    Zhu X, Su Q, Feng W, Li F 2017 Chem. Soc. Rev. 46 1025Google Scholar

    [6]

    Auzel F 2004 Chem. Rev. 104 139Google Scholar

    [7]

    Dong H, Sun L D, Yan C H 2015 Chem. Soc. Rev. 44 1608Google Scholar

    [8]

    Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X H, Liu X G 2011 Nat. Mater. 10 968Google Scholar

    [9]

    Hu F, Liu B, Chu H, Liu C, Li Z, Chen D, Li L 2019 Nanoscale 11 9201Google Scholar

    [10]

    丁庆磊, 肖思国, 张向华, 夏艳琴, 刘政威 2006 物理学报 55 5140Google Scholar

    Ding Q L, Xiao S G, Zhang X H, Xia Y Q, Liu Z W 2006 Acta Phys. Sin. 55 5140Google Scholar

    [11]

    Haase M, SchäfTm H 2011 Angew. Chem. Int. Ed. 50 5808Google Scholar

    [12]

    Rao L, Bu L L, Cai B, Xu J H, Li A, Zhang W F, Zhao X Z 2016 Adv. Mater. 28 3460Google Scholar

    [13]

    Liu K, Liu X, Zeng Q, Zhang Y, Tu L, Liu T, AaldTms M C 2012 ACS Nano 6 4054Google Scholar

    [14]

    Wang M, Mi C C, Wang W X, Liu C H, Wu Y F, Xu Z R, Xu S K 2009 ACS Nano 3 1580Google Scholar

    [15]

    Nyk M, Kumar R, Ohulchanskyy T Y, BTmgey E J, Prasad P N 2008 Nano Lett. 8 3834Google Scholar

    [16]

    Peng J, Samanta A, Zeng X, Han S, Wang L, Su D, Jiang W 2017 Angew. Chem. Int. Ed. 56 4165Google Scholar

    [17]

    Liang L, Xie X, All A. H, Huang L, Liu X 2016 Chem. Eur. J. 22 10801Google Scholar

    [18]

    Wang S, Fan Y, Li D, Sun C, Lei Z, Lu L, Zhang F 2019 Nat. Commun. 10 1058Google Scholar

    [19]

    Lei X, Li R, Tu D, Shang X, Liu Y, You W, Chen X 2018 Chem. Sci. 9 4682Google Scholar

    [20]

    Liu L, Wang S, Zhao B, Pei P, Fan Y, Li X, Zhang F 2018 Angew. Chem. Int. Ed. 57 7518Google Scholar

    [21]

    H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, Y. Urano 2010 Chem. Rev. 110 2620Google Scholar

    [22]

    Liu X, Qiu J 2015 Chem. Soc. Rev. 44 8714Google Scholar

    [23]

    Liu X, Yan C H, Capobianco J A 2015 Chem. Soc. Rev. 44 1299Google Scholar

    [24]

    Park W, Lu D, Ahn S 2015 Chem. Soc. Rev. 44 2940Google Scholar

    [25]

    Nadort A, Zhao J, Goldys E M 2016 Nanoscale 8 13099Google Scholar

    [26]

    Liu B, Chen Y, Li C, He F, Hou Z, Huang S, Zhu H, Chen X, Lin J 2015 Adv. Funct. Mater. 25 4717Google Scholar

    [27]

    Liu B, Li C, Cheng Z, Hou Z, Huang S, Lin J 2016 Biomater. Sci. 4 890Google Scholar

    [28]

    Zhai X, Lei P, Zhang P, Wang Z, Song S, Xu X, Liu X, Feng J, Zhang H 2015 Biomaterials 65 115Google Scholar

    [29]

    Ye S, Chen G, Shao W, Qu J, Prasad P N 2015 Nanoscale 7 3976Google Scholar

    [30]

    Li W, Chen Z, Zhou L, Li Z, Ren J, Qu X 2015 J. Am. Chem. Soc. 137 8199Google Scholar

    [31]

    Hao S, Yang L, Qiu H, Fan R, Yang C, Chen G 2015 Nanoscale 7 10775Google Scholar

    [32]

    Chen D, Liu L, Huang P, Ding M, Zhong J, Ji Z 2015 J. Phys. Chem. Lett. 6 2833Google Scholar

    [33]

    Gu Z, Yan L, Tian G, Li S, Cha Z, Zhao Y 2013 Adv. Mater. 25 3758Google Scholar

    [34]

    Dou Q, Idris N M, Zhang Y 2013 Biomaterials 34 1722Google Scholar

    [35]

    Liu X, Kong X, Zhang Y, Tu L, Wang Y, Zeng Q, Li C, Shi Z, Zhang H 2011 Chem. Commun. 47 11957Google Scholar

    [36]

    Yi G S, Chow G M 2006 Chem. Mater. 19 341

    [37]

    Wang F, Liu X 2008 J. Am. Chem. Soc. 130 5642Google Scholar

    [38]

    Zhang S L, Li J, Lykotrafitis G, Bao G, Suresh S 2009 Adv. Mater. 21 419Google Scholar

    [39]

    Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M R, Miyazono K, Uesaka M, Hishiyama N, Kataoka K 2011 Nat. Nanotechnol. 6 815Google Scholar

  • 图 1  热注射法可控制备核壳型稀土上转换发光纳米材料的设计原理图

    Fig. 1.  Schematic design of core-shell structured upconversion nanoparticles synthesized with the hot injection method.

    图 2  (a), (b) β相的NaYF4:Yb, Tm的TEM图; (c) NaYF4:Yb, Tm的粒径分布统计图

    Fig. 2.  (a), (b) TEM images and (c) the corresponding size distribution of the of NaYF4: Yb, Tm.

    图 3  (a)−(d) NaYF4:Yb, Tm@NaYF4纳米粒子(粒径约43.8 nm)的结构示意图, TEM图和粒径分布图; (e)−(h) NaYF4:Yb, Tm@NaYF4纳米粒子(粒径约63.2 nm)的结构示意图, TEM图和粒径分布图; (i)−(l) NaYF4:Yb, Tm@NaYF4纳米粒子(粒径约80.8 nm)的结构示意图, TEM图和粒径分布图; (m)−(p) NaYF4:Yb, Tm@NaYF4纳米粒子(粒径约100.7 nm)的结构示意图, TEM图和粒径分布图

    Fig. 3.  (a)−(d) The schematic core-shell structure, TEM images and size distribution of NaYF4:Yb, Tm@NaYF4 (about 43.8 nm); (e)−(h) the schematic core-shell structure, TEM images and size distribution of NaYF4:Yb, Tm@NaYF4 (about 63.2 nm); (i)−(l) the schematic core-shell structure, TEM images and size distribution of NaYF4:Yb, Tm@NaYF4 (about 80.8 nm); (m)−(p) the schematic core-shell structure, TEM images and size distribution of NaYF4:Yb, Tm@NaYF4 (about 100.7 nm).

    图 4  (a) 980 nm激发下NaYF4:Yb, Tm@NaYF4纳米粒子的上转换机制; (b)不同壳层厚度的UCNPs的上转换发光光谱; (c)不同壳层厚度的UCNPs的上转换发光强度的柱状统计图

    Fig. 4.  (a) The energy transfer mechanisms of NaYF4:Yb, Tm@NaYF4 UCNPs; (b) the upconversion luminescent spectra and (c) the relative luminescent intensity of core-shell structured UCNPs with different shell thicknesses.

    图 5  (a) UCNP@PEG的结构示意图; (b) UCNP@PEG的TEM图; (c)与不同浓度UCNP@PEG培养后, HeLa的细胞活性

    Fig. 5.  (a) Schematic structure of UCNP@PEG; (b) TEM image of UCNP@PEG; (c) cell viabilities of HeLa cells after incubation with various concentrations of UCNP@PEG

    图 6  与UCNP@PEG共同培养0.5, 3.0 和6.0 h后的HeLa的上转换荧光成像照片

    Fig. 6.  Upconversion luminescent images of HeLa cells after culturing with UCNP@PEG for 0.5, 3.0 and 6.0 h.

  • [1]

    Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D 2018 Nat. Commun. 9 2415Google Scholar

    [2]

    Chen Q, Xie X, Huang B, Liang L, Han S, Yi Z, Liu X 2017 Angew. Chem. 129 7713Google Scholar

    [3]

    Li X, Zhang F, Zhao D 2013 Nano Today 8 643Google Scholar

    [4]

    Li X, Zhang F, Zhao D 2015 Chem. Soc. Rev. 44 1346Google Scholar

    [5]

    Zhu X, Su Q, Feng W, Li F 2017 Chem. Soc. Rev. 46 1025Google Scholar

    [6]

    Auzel F 2004 Chem. Rev. 104 139Google Scholar

    [7]

    Dong H, Sun L D, Yan C H 2015 Chem. Soc. Rev. 44 1608Google Scholar

    [8]

    Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X H, Liu X G 2011 Nat. Mater. 10 968Google Scholar

    [9]

    Hu F, Liu B, Chu H, Liu C, Li Z, Chen D, Li L 2019 Nanoscale 11 9201Google Scholar

    [10]

    丁庆磊, 肖思国, 张向华, 夏艳琴, 刘政威 2006 物理学报 55 5140Google Scholar

    Ding Q L, Xiao S G, Zhang X H, Xia Y Q, Liu Z W 2006 Acta Phys. Sin. 55 5140Google Scholar

    [11]

    Haase M, SchäfTm H 2011 Angew. Chem. Int. Ed. 50 5808Google Scholar

    [12]

    Rao L, Bu L L, Cai B, Xu J H, Li A, Zhang W F, Zhao X Z 2016 Adv. Mater. 28 3460Google Scholar

    [13]

    Liu K, Liu X, Zeng Q, Zhang Y, Tu L, Liu T, AaldTms M C 2012 ACS Nano 6 4054Google Scholar

    [14]

    Wang M, Mi C C, Wang W X, Liu C H, Wu Y F, Xu Z R, Xu S K 2009 ACS Nano 3 1580Google Scholar

    [15]

    Nyk M, Kumar R, Ohulchanskyy T Y, BTmgey E J, Prasad P N 2008 Nano Lett. 8 3834Google Scholar

    [16]

    Peng J, Samanta A, Zeng X, Han S, Wang L, Su D, Jiang W 2017 Angew. Chem. Int. Ed. 56 4165Google Scholar

    [17]

    Liang L, Xie X, All A. H, Huang L, Liu X 2016 Chem. Eur. J. 22 10801Google Scholar

    [18]

    Wang S, Fan Y, Li D, Sun C, Lei Z, Lu L, Zhang F 2019 Nat. Commun. 10 1058Google Scholar

    [19]

    Lei X, Li R, Tu D, Shang X, Liu Y, You W, Chen X 2018 Chem. Sci. 9 4682Google Scholar

    [20]

    Liu L, Wang S, Zhao B, Pei P, Fan Y, Li X, Zhang F 2018 Angew. Chem. Int. Ed. 57 7518Google Scholar

    [21]

    H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, Y. Urano 2010 Chem. Rev. 110 2620Google Scholar

    [22]

    Liu X, Qiu J 2015 Chem. Soc. Rev. 44 8714Google Scholar

    [23]

    Liu X, Yan C H, Capobianco J A 2015 Chem. Soc. Rev. 44 1299Google Scholar

    [24]

    Park W, Lu D, Ahn S 2015 Chem. Soc. Rev. 44 2940Google Scholar

    [25]

    Nadort A, Zhao J, Goldys E M 2016 Nanoscale 8 13099Google Scholar

    [26]

    Liu B, Chen Y, Li C, He F, Hou Z, Huang S, Zhu H, Chen X, Lin J 2015 Adv. Funct. Mater. 25 4717Google Scholar

    [27]

    Liu B, Li C, Cheng Z, Hou Z, Huang S, Lin J 2016 Biomater. Sci. 4 890Google Scholar

    [28]

    Zhai X, Lei P, Zhang P, Wang Z, Song S, Xu X, Liu X, Feng J, Zhang H 2015 Biomaterials 65 115Google Scholar

    [29]

    Ye S, Chen G, Shao W, Qu J, Prasad P N 2015 Nanoscale 7 3976Google Scholar

    [30]

    Li W, Chen Z, Zhou L, Li Z, Ren J, Qu X 2015 J. Am. Chem. Soc. 137 8199Google Scholar

    [31]

    Hao S, Yang L, Qiu H, Fan R, Yang C, Chen G 2015 Nanoscale 7 10775Google Scholar

    [32]

    Chen D, Liu L, Huang P, Ding M, Zhong J, Ji Z 2015 J. Phys. Chem. Lett. 6 2833Google Scholar

    [33]

    Gu Z, Yan L, Tian G, Li S, Cha Z, Zhao Y 2013 Adv. Mater. 25 3758Google Scholar

    [34]

    Dou Q, Idris N M, Zhang Y 2013 Biomaterials 34 1722Google Scholar

    [35]

    Liu X, Kong X, Zhang Y, Tu L, Wang Y, Zeng Q, Li C, Shi Z, Zhang H 2011 Chem. Commun. 47 11957Google Scholar

    [36]

    Yi G S, Chow G M 2006 Chem. Mater. 19 341

    [37]

    Wang F, Liu X 2008 J. Am. Chem. Soc. 130 5642Google Scholar

    [38]

    Zhang S L, Li J, Lykotrafitis G, Bao G, Suresh S 2009 Adv. Mater. 21 419Google Scholar

    [39]

    Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M R, Miyazono K, Uesaka M, Hishiyama N, Kataoka K 2011 Nat. Nanotechnol. 6 815Google Scholar

  • [1] 高伟, 张正宇, 张景蕾, 丁鹏, 韩庆艳, 张成云, 严学文, 董军. 基于单颗粒微米核壳晶体的微区上转换发射光谱构筑微纳光子学条形码. 物理学报, 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [2] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理. 物理学报, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [3] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [4] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [5] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [6] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射. 物理学报, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [7] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211719
    [8] 高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军. 改变激发环境调控Ho3+离子的上转换发光特性. 物理学报, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [9] 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控. 物理学报, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [10] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射. 物理学报, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [11] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性. 物理学报, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [12] 毛鑫光, 王俊, 沈杰. 磁控溅射制备Er3+/Yb3+共掺杂TiO2薄膜的上转换发光特性. 物理学报, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [13] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究. 物理学报, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [14] 舒明飞, 尚玉黎, 陈威, 曹万强. 核壳结构对弛豫铁电体介电行为的影响. 物理学报, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [15] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [16] 袁宁一, 陈效双, 丁建宁, 何泽军, 李锋, 陆卫. 溶胶-凝胶制备ZnO-SiO2复合膜的量子效应和上转换发光. 物理学报, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [17] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [18] 温 磊, 张丽艳, 杨建虎, 汪国年, 陈 伟, 胡丽丽. 掺铒氟(卤)磷碲酸盐玻璃的上转换发光性能研究. 物理学报, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [19] 陈晓波, 刘凯, 庄健, 王国文, 陈创天. HoYb:YVO4的上转换发光研究. 物理学报, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] 赵丽娟, 孙聆东, 许京军, 张光寅. 用转移函数方法研究铒离子上转换发光与抽运功率的关系. 物理学报, 2001, 50(1): 63-67. doi: 10.7498/aps.50.63
计量
  • 文章访问数:  11559
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-08
  • 修回日期:  2020-04-17
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回