搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金薄膜衬底上介质-金属核壳结构的光学力调控

张佳晨 鱼卫星 肖发俊 赵建林

引用本文:
Citation:

金薄膜衬底上介质-金属核壳结构的光学力调控

张佳晨, 鱼卫星, 肖发俊, 赵建林

Tuning optical force of dielectric/metal core-shell placed above Au film

Zhang Jia-Chen, Yu Wei-Xing, Xiao Fa-Jun, Zhao Jian-Lin
PDF
HTML
导出引用
  • 采用时域有限差分法和麦克斯韦应力张量法, 系统研究了金薄膜衬底上介质-金属核壳结构所受的光学力. 研究结果表明: 由于核壳结构与衬底之间强的等离激元模式杂化效应, 其所受的光学力相较于单个核壳结构实现了一个数量级的增强; 同时, 通过改变激发波长, 实现了局域电场分布的调控, 以此观察到了核壳结构光学力方向的可控反转; 进一步, 详细分析了核壳结构所受光学力随其到衬底间距、内核介质的尺寸及折射率等的变化关系, 以此丰富了光学力大小、方向和峰值波长的调控方法. 研究结果可为精确控制颗粒/金属薄膜纳米腔的尺寸提供一种新的途径, 并为调控单分子级的光与物质相互作用、研发新型纳米光子器件提供有益参考.
    Manipulating the core-shell structure with the optical force has been extensively studied, giving birth to applications such as particle sorting, biomarkers and drug delivery. Tailoring the optical force exerted on the core-shell above the metallic film remains unexplored, despite the obvious benefits for both fundamental research and applications including strong coupling, surface enhanced spectroscopy, nanolaser, and nanoscale sensing. In this work, we systematically investigate the optical force exerted on a dielectric/metal core-shell above a gold film by utilizing the Maxwell stress tensor formalism. It is found that at the present gold substrate, the optical force on the core-shell can be one order of magnitude larger than that on the individual core-shell due to the strong coupling between the core-shell and the gold film. Interestingly, the direction of the optical force can be reversed from positive to negative by distributing the local field from the upside of core-shell to the structure gap through changing the excitation wavelength. Furthermore, we demonstrate that the magnitude and peak wavelength of the optical force can be well controlled by altering the structure gap, the size and refractive index of the core. More specifically, it is found that the coupling strength between the core-shell and the gold film decreases with the gap size increasing. As a result, we observe the blue shift of bonding mode and the decrease of local field in the gap, which leads the force peak wavelength to be blue-shifted and the force peak magnitude to decrease, respectively. Also, by increasing the radius and refractive index of the core, a red shift of force peak is accompanied with the red shift of the bonding mode. In addition, the force peak magnitude follows the same trend as the total local field enhancement factor when the radius and refractive index of the core change. We hope that our results open the way to control the cavity size of particle on film structure, which would be beneficial for tailoring the light matter interaction even down to single molecular level and promises to have the applications in novel functional photonic devices.
      通信作者: 肖发俊, fjxiao@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0303800)、国家自然科学基金(批准号: 11634010, 61675170, 11874050)、中国科学院光谱成像技术重点实验室开放基金(批准号: LSIT201913W)和中央高校基本科研业务费(批准号: 3102019JC008, 310201911fz049)资助的课题
      Corresponding author: Xiao Fa-Jun, fjxiao@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303800), the National Natural Science Foundation of China (Grant Nos. 11634010, 61675170, 11874050), the Open Research Fund of CAS Key Laboratory of Spectral Imaging Technology, China (Grant No. LSIT201913W), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 3102019JC008, 310201911fz049)
    [1]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [2]

    Svoboda K, Block S M 1994 Opt. Lett. 19 930Google Scholar

    [3]

    Gong L P, Zhang X H, Gu B, Zhu Z Q, Rui G H, He J, Zhan Q W, Cui Y P 2019 Nanophotonics 8 1117Google Scholar

    [4]

    Li H, Cao Y Y, Zhou L M, Xu X H, Zhu T T, Shi Y Z, Qiu C W, Ding W Q 2020 Adv. Opt. Photonics 12 288Google Scholar

    [5]

    Tong L M, Miljkovic V D, Johansson P, Käll M 2011 Nano Lett. 11 4505Google Scholar

    [6]

    Huang J, Yang Y 2015 Nanomaterials 5 1048Google Scholar

    [7]

    Lu J S, Yang H B, Zhou L N, Yang Y Q, Luo S, Li Q, Qiu M 2017 Phys. Rev. Lett. 118 043601Google Scholar

    [8]

    Bezryadina A S, Preece D C, Chen J C, Chen Z G 2016 Light-Sci. Appl. 5 e16158Google Scholar

    [9]

    Xin H B, Li Y C, Xu D K, Zhang Y L, Chen C H, Li B J 2017 Small 13 1603418Google Scholar

    [10]

    Dhakal K R, Lakshminarayanan V 2018 Prog. Opt. 63 1Google Scholar

    [11]

    Marago O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807Google Scholar

    [12]

    Juan M L, Righini M, Quidant R 2011 Nat. Photonics 5 349Google Scholar

    [13]

    Liu X S, Wu Y, Xu X H, Li Y C, Zhang Y, Li B J 2019 Small 1905209Google Scholar

    [14]

    李银妹, 龚雷, 李迪, 刘伟伟, 钟敏成, 周金华, 王自强, 姚焜 2015 中国激光 42 0101001Google Scholar

    Li Y M, Gong L, Li D, Liu W W, Zhong M C, Zhou Z H, Wang Z Q, Yao K 2015 Chin. J. Las. 42 0101001Google Scholar

    [15]

    童廉明, 徐红星 2012 物理 41 582

    Tong L M, Xu H X 2012 Physics 41 582

    [16]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [17]

    Zhang W H, Huang L N, Santschi C, Martin O J 2010 Nano Lett. 10 1006Google Scholar

    [18]

    Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, Yuan G H, Du L P, Zhu S W, Lei T, Yuan X C 2013 Nat. Commun. 4 2891Google Scholar

    [19]

    Li Z P, Zhang S P, Tong L M, Wang P J, Dong B, Xu H X 2014 ACS Nano 8 701Google Scholar

    [20]

    Chen H J, Liu S Y, Zi J, Lin Z F 2015 ACS Nano 9 1926Google Scholar

    [21]

    Liu H, Ng J, Wang S B, Lin Z F, Hang Z H, Chan C T, Zhu S N 2011 Phys. Rev. Lett. 106 087401Google Scholar

    [22]

    Demergis V, Florin E L 2012 Nano Lett. 12 5756Google Scholar

    [23]

    Zhang Q, Xiao J J, Zhang X M, Yao Y, Liu H 2013 Opt. Express 21 6601Google Scholar

    [24]

    Zhang Q, Xiao J J 2013 Opt. Lett. 38 4240Google Scholar

    [25]

    Simpson S H, Zemánek P, Maragò O M, Jones P H, Hanna S 2017 Nano Lett. 17 3485Google Scholar

    [26]

    Li G C, Zhang Y L, Lei D Y 2016 Nanoscale 8 7119Google Scholar

    [27]

    Xiao F J, Ren Y X, Shang W Y, Zhu W R, Han L, Lu H, Mei T, Premaratne M, Zhao J L 2018 Opt. Lett. 43 3413Google Scholar

    [28]

    Zhang Q, Li G C, Lo T W, Lei D Y 2018 J. Opt. 20 024010Google Scholar

    [29]

    Ho K H W, Shang A, Shi F H, Lo T W, Yeung P H, Yu Y S, Zhang X M, Wong K, Lei D Y 2018 Adv. Funct. Mater. 28 1800383Google Scholar

    [30]

    Li G C, Zhang Q, Maier S A, Lei D Y 2018 Nanophotonics 7 1865Google Scholar

    [31]

    Wu Z Q, Yang J L, Manjunath N K, Zhang Y J, Feng S R, Lu Y H, Wu J H, Zhao W W, Qiu C Y, Li J F, Lin S S 2018 Adv. Mater. 30 1706527Google Scholar

    [32]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [33]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [34]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [35]

    Saleh A A E, Dionne J A 2012 Nano Lett. 12 5581Google Scholar

    [36]

    Xiao F J, Wang G L, Gan X T, Shang W Y, Cao S Y, Zhu W R, Mei T, Premaratne M, Zhao J L 2019 Photonics Res. 7 00001Google Scholar

    [37]

    Xiao F J, Zhang J C, Yu W X, Zhu W R, Mei T, Premaratne M, Zhao J L 2020 Opt. Express 28 3000Google Scholar

  • 图 1  金膜衬底上介质/金属核壳结构的示意图

    Fig. 1.  Schematic diagram of a dielectric/metal core-shell placed above a gold film.

    图 2  核壳-金薄膜结构的等离激元杂化示意图和散射光谱 (a)等离激元杂化示意图; (b)散射光谱, 插图为电场分量Ezxy平面上的分布

    Fig. 2.  (a) Scheme of plasmon hybridization picture of the core-shell on gold film; (b) scattering spectrum of core-shell particles on gold film. The inset of panel (b) shows the z-component of the electric field in xy plane.

    图 3  (a)核壳结构所受的纵向光学力Fz; 波长为(b) 540, (c) 670, (d) 790和(e) 830 nm时核壳结构周围电场强度增强因子EF的分布

    Fig. 3.  (a) Longitudinal optical force Fz exerted on the core-shell on gold film. The electric-field intensity enhancement factor map of the core-shell on gold film at wavelengths of (b) 540, (c) 670, (d) 790, and (e) 830 nm, respectively.

    图 4  核壳-金膜结构的(a)散射光谱、(b)光学力谱和(c)纵向光学力幅值及间隙的平均电场强度增强因子随结构间隙h的变化

    Fig. 4.  (a) Scattering spectra of the core-shell on gold film; (b) longitudinal optical force spectra of the core-shell on gold film; (c) maximum longitudinal optical force and the average electric-field intensity enhancement factor as a function of gap size for the core-shell on gold film.

    图 5  核壳-金膜结构的(a)散射光谱、(b)纵向光学力谱和(c)纵向光学力幅值以及间隙内平均电场强度增强因子随内核尺寸Rc的变化

    Fig. 5.  (a) Scattering spectra of the core-shell on gold film; (b) longitudinal optical force spectra of the core-shell on gold film; (c) maximum longitudinal optical force as well as the average electric-field intensity enhancement factor as a function of dielectric core radius for the core-shell on gold film.

    图 6  核壳-金膜结构的(a)散射光谱、(b)光学力谱和(c)纵向光学力幅值及间隙的平均电场强度增强因子随内核折射率nc的变化

    Fig. 6.  (a) Scattering spectra of the core-shell on gold film; (b) longitudinal optical force spectra of the core-shell on gold film; (c) maximum longitudinal optical force and the average electric-field intensity enhancement factor as a function of index for the core-shell on gold film.

  • [1]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [2]

    Svoboda K, Block S M 1994 Opt. Lett. 19 930Google Scholar

    [3]

    Gong L P, Zhang X H, Gu B, Zhu Z Q, Rui G H, He J, Zhan Q W, Cui Y P 2019 Nanophotonics 8 1117Google Scholar

    [4]

    Li H, Cao Y Y, Zhou L M, Xu X H, Zhu T T, Shi Y Z, Qiu C W, Ding W Q 2020 Adv. Opt. Photonics 12 288Google Scholar

    [5]

    Tong L M, Miljkovic V D, Johansson P, Käll M 2011 Nano Lett. 11 4505Google Scholar

    [6]

    Huang J, Yang Y 2015 Nanomaterials 5 1048Google Scholar

    [7]

    Lu J S, Yang H B, Zhou L N, Yang Y Q, Luo S, Li Q, Qiu M 2017 Phys. Rev. Lett. 118 043601Google Scholar

    [8]

    Bezryadina A S, Preece D C, Chen J C, Chen Z G 2016 Light-Sci. Appl. 5 e16158Google Scholar

    [9]

    Xin H B, Li Y C, Xu D K, Zhang Y L, Chen C H, Li B J 2017 Small 13 1603418Google Scholar

    [10]

    Dhakal K R, Lakshminarayanan V 2018 Prog. Opt. 63 1Google Scholar

    [11]

    Marago O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807Google Scholar

    [12]

    Juan M L, Righini M, Quidant R 2011 Nat. Photonics 5 349Google Scholar

    [13]

    Liu X S, Wu Y, Xu X H, Li Y C, Zhang Y, Li B J 2019 Small 1905209Google Scholar

    [14]

    李银妹, 龚雷, 李迪, 刘伟伟, 钟敏成, 周金华, 王自强, 姚焜 2015 中国激光 42 0101001Google Scholar

    Li Y M, Gong L, Li D, Liu W W, Zhong M C, Zhou Z H, Wang Z Q, Yao K 2015 Chin. J. Las. 42 0101001Google Scholar

    [15]

    童廉明, 徐红星 2012 物理 41 582

    Tong L M, Xu H X 2012 Physics 41 582

    [16]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [17]

    Zhang W H, Huang L N, Santschi C, Martin O J 2010 Nano Lett. 10 1006Google Scholar

    [18]

    Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, Yuan G H, Du L P, Zhu S W, Lei T, Yuan X C 2013 Nat. Commun. 4 2891Google Scholar

    [19]

    Li Z P, Zhang S P, Tong L M, Wang P J, Dong B, Xu H X 2014 ACS Nano 8 701Google Scholar

    [20]

    Chen H J, Liu S Y, Zi J, Lin Z F 2015 ACS Nano 9 1926Google Scholar

    [21]

    Liu H, Ng J, Wang S B, Lin Z F, Hang Z H, Chan C T, Zhu S N 2011 Phys. Rev. Lett. 106 087401Google Scholar

    [22]

    Demergis V, Florin E L 2012 Nano Lett. 12 5756Google Scholar

    [23]

    Zhang Q, Xiao J J, Zhang X M, Yao Y, Liu H 2013 Opt. Express 21 6601Google Scholar

    [24]

    Zhang Q, Xiao J J 2013 Opt. Lett. 38 4240Google Scholar

    [25]

    Simpson S H, Zemánek P, Maragò O M, Jones P H, Hanna S 2017 Nano Lett. 17 3485Google Scholar

    [26]

    Li G C, Zhang Y L, Lei D Y 2016 Nanoscale 8 7119Google Scholar

    [27]

    Xiao F J, Ren Y X, Shang W Y, Zhu W R, Han L, Lu H, Mei T, Premaratne M, Zhao J L 2018 Opt. Lett. 43 3413Google Scholar

    [28]

    Zhang Q, Li G C, Lo T W, Lei D Y 2018 J. Opt. 20 024010Google Scholar

    [29]

    Ho K H W, Shang A, Shi F H, Lo T W, Yeung P H, Yu Y S, Zhang X M, Wong K, Lei D Y 2018 Adv. Funct. Mater. 28 1800383Google Scholar

    [30]

    Li G C, Zhang Q, Maier S A, Lei D Y 2018 Nanophotonics 7 1865Google Scholar

    [31]

    Wu Z Q, Yang J L, Manjunath N K, Zhang Y J, Feng S R, Lu Y H, Wu J H, Zhao W W, Qiu C Y, Li J F, Lin S S 2018 Adv. Mater. 30 1706527Google Scholar

    [32]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [33]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [34]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [35]

    Saleh A A E, Dionne J A 2012 Nano Lett. 12 5581Google Scholar

    [36]

    Xiao F J, Wang G L, Gan X T, Shang W Y, Cao S Y, Zhu W R, Mei T, Premaratne M, Zhao J L 2019 Photonics Res. 7 00001Google Scholar

    [37]

    Xiao F J, Zhang J C, Yu W X, Zhu W R, Mei T, Premaratne M, Zhao J L 2020 Opt. Express 28 3000Google Scholar

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [5] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [7] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [8] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [9] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [10] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [11] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [12] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [13] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [14] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [15] 汪涵聪, 李志鹏. 表面增强光学力与光操纵研究进展. 物理学报, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [16] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [17] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [18] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性. 物理学报, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [19] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [20] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
计量
  • 文章访问数:  4972
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-13
  • 修回日期:  2020-05-01
  • 上网日期:  2020-06-07
  • 刊出日期:  2020-09-20

/

返回文章
返回