搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单颗粒微米核壳晶体的微区上转换发射光谱构筑微纳光子学条形码

高伟 张正宇 张景蕾 丁鹏 韩庆艳 张成云 严学文 董军

引用本文:
Citation:

基于单颗粒微米核壳晶体的微区上转换发射光谱构筑微纳光子学条形码

高伟, 张正宇, 张景蕾, 丁鹏, 韩庆艳, 张成云, 严学文, 董军

Constructing micro/nano-photonics barcodes based on micro-region upconversion emission spectrum of single core-shell microcrystal

Gao Wei, Zhang Zheng-Yu, Zhang Jing-Lei, Ding Peng, Han Qing-Yan, Zhang Cheng-Yun, Yan Xue-Wen, Dong Jun
PDF
导出引用
  • 基于外延生长技术构建不同结构特性的核壳结构已成为调控稀土掺杂微纳晶体材料发光特性的有效技术手段之一。为此,本文基于多次外延生长并引入NaYF4中间隔离层,构建了具有壳层独立发光特性NaYF4: 50%Yb3+/2%Tm3+@ NaYF4@NaYF4: 20%Yb3+/2%Er3+@NaYF4@NaYbF4: 2%Er3+多层微米核壳晶体。在980 nm激光激发下,借助共聚焦显微光谱测试系统,通过改变单颗粒微米晶体的激发位置,研究了单颗粒核壳微米晶体不同微区内的发光和能量传递特性。实验结果表明:在相邻发光层之间引入NaYF4惰性壳,不仅可实现单颗粒微米晶体区域内发光的调控,且可有效抑制了各壳层离子间的相互作用,实现了各壳层的多彩独立发射。同时,基于单颗粒核壳微米晶体不同区域内多彩发射特性,构建具有信息可调的微纳光子学条形码。由此可见,本文所构建具有区域化可调发射的微米核壳结构,可在不同的激发条件下实现其发光的多彩可调,其丰富光谱指纹信息为单颗粒微米材料在光学防伪领域中的应用提供了新的途径。
    The construction of core-shell structures with different structural properties based on the epitaxial growth technique has become an effective technique for regulating the luminescence properties of micro/nanocrystals. In order to obtain richer spectral information, this work attempts to prepare NaYF4:50%Yb3+/2%Tm3+@NaYF4@ NaYF4:20%Yb3+/2%Er3+@NaYF4@NaYbF4:2%Er3+multilayered core-shell microcry- stals by using multiple epitaxial growth with the introduction of surface modifiers and controlling their reaction conditions. From the XRD and SEM results, it is evident that the core-shell microcrystals possess a pure hexagonal crystal structure in the form of a disk.The microdisk has a thickness of about 2.32 μm with a diameter of about 28.31μm. The upconversion luminescence characteristics of different single microcrystal structures were investigated by a confocal microspectroscopy system. In order to achieve the selective excitation and emission of a single microcrystal, the spatial distribution of luminescent ions can be controlled through the introduction of an intermediate isolation layer. Under 980 nm laser excitation, different excitation sites of the single microdisk exhibit different upconversion emission characteristics. The significant blue (450 nm and 475 nm), red (648 nm) and green (524 nm and 540 nm) emissions are observed, mainly originating from Tm3+ ions and Er3+ radiative transitions. Meanwhile, the red and blue upconversion emission intensities of the microcrystals were improved by using various shell layers. In addition, the luminescence and energy-transfer features of single microcrystals were explored by varying the excitation position. The experimental results demonstrate that the incorporation of NaYF4 inert shells between luminescent layers can regulate luminescence and prevent ion interactions. By utilizing the spectral fingerprint data of dopant ions in various shell layers, we created customizable micro-nano photonic barcodes and employed them for optical anti-counterfeiting detection. This study explores the use of constructed core-shell structures with luminescent tunable micron core-shell structures to achieve diverse spectral information and maintain stability through their structural properties. Thus, this core-shell structure offers a novel approach for utilizing upconversion luminescent microcrystals in micro- and nanophotonics for anti-counterfeiting and display purposes.
  • [1]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001

    [2]

    Himmelstoß S F, Hirsch T 2019 Part. Part. Syst. Char 36 1900235

    [3]

    Hu Y, Yang Y M, Zhang X F, Wang X, Li X X, Li Y Q, Li T Y, Zhang H W 2020 J. Phys. Chem. C 124 24940

    [4]

    Han Q Y, Zhao B C, Gao W, Li Y X,Sun Z Y, Wang C, Chen Y, Wang Y K, Yan X W, Dong J 2022 Phys. Chem. Chem. Phys 24 13730.

    [5]

    Zhuang Y, Chen D, Chen W, Zhang W, Su X, Deng R, An Z, Chen H, Xie R J 2022 Light 10 132.

    [6]

    Zhang C Y, Yin Q X, Ge S K, Qi J X, Han Q Y, Gao W, Wang Y K, Zhang M D, Dong J 2024 Mater Res Bull 112801

    [7]

    Patnam H, Hussain S K, Yu J S 2023 Cream Int 49 2967

    [8]

    Ding M Y, Dong B, Lu Y, Yang X F, Yuan Y J,Bai W F, Wu S T, Ji Z G, Lu C H, Zhang K, Zeng H B 2020 Adv.Mater 32 2002121

    [9]

    Zhou X Q, Ning L X, Qiao J W, Zhao Y F,Xiong P X, Xia Z G 2022 Nat.Commun 13 7589

    [10]

    Yao Y N, Gao Z H, Lv Y C, Lin X Q, Liu Y Y, Du Y X, Hu F Q, Zhao Y S 2019 Angew. Chem. Int. Ed. 131 13941

    [11]

    Chen J B, Li M S, Sun R R, Reimers J R, Sun L N 2024 Adv. Funct. Mater 2315276

    [12]

    Ying W T, Nie J H, Fan X M, Xu S Q, Gu J M, Liu S M 2021 Adv. Opt. Mate 9 2100197

    [13]

    Zheng B Z, Fan J Y, Chen B, Qin X, Wang J, Wang F, Deng R R, Liu X G 2022 Chem. Rev 122 5519

    [14]

    Fan Y, Liu L, Zhang F 2019 Nano Today 25 68

    [15]

    Han Y D, Li H Y, Wang Y B, Pan Y, Huang L, Song F, Huang W 2017 Sci Rep 7 1320

    [16]

    Gao W, Zhang J J, Han S S, Xing Y, Shao L, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2022 Acta Phys. Sin 71 263(in Chinses)[高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军 2022 物理学报 71 263]

    [17]

    Gao W, Shao L, Han S S, Xing Y, Zhang J J, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2023 Acta Phys. Sin 72 116(in Chinses)[高伟, 邵琳, 韩珊珊, 邢宇, 张晶晶, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军 2023 物理学报 72 116]

    [18]

    He E J, Yu J J, Wang C, Jiang Y, Zuo X Z, Xu B, Wen J, Qin Y F, Wang Z J 2020 Mater Res Bull 121 110613

    [19]

    Yang D D, Peng Z X, Guo X, Qiao S Q, Zhao P, Zhan Q Q, Qiu J R, Yang Z M, Dong G P 2021 Adv. Opt. Mater 9 2100044

    [20]

    Jin L M, Chen X, Siu C K, Wang F, Yu S F 2017 ACS nano 11 843

    [21]

    Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Wang F, Ying L Y, Zheng Z W, Xie Y J, Wu Y F, Yang X D, Zhang D 2021 Appl Phys Lett 118

    [22]

    Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin 71 169(in Chinses)[高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军 2022 物理学报 71 169]

    [23]

    Wu W W, Chen D Q, Zhou Y, Wang Z Y, Ji Z G 2016 J. Alloys Compd 682 275

    [24]

    Sun J, Zhang Z H, Zhao H F, Jiang H 2016 J Lumin 37 526(in Chinses)[苏俊, 张振华, 赵会峰, 姜宏 2016 发光学报 37 526]

    [25]

    Lüthi S R, Pollnau M, Güdel H U, Hehlen M P 1999 Phys. Rev. B60 162

    [26]

    Sun T Y, Li Y H, Ho W L, Zhu Q,Chen X, Jin L M, Zhu H M, Huang B L, Lin J, Little B E, Chu S T, Wang F 2019 Nat. commun 10 1811

    [27]

    Bai X, Song H W, Pan G H, Lei Y Q, Wang T, Ren X G, Lu S Z, Dong B, Dai Q L, Fan L B 2007 J. Phys. Chem. C 111 13611

    [28]

    Mehrdel B, Nikbakht A, Aziz A A, Jameel M S, Dheyab M A, Khaniabadi P M 2022 Nanotechnology 33 082001

    [29]

    Yan X W, Zhang J L, Zhang Z Y, Ding P, Han Q Y, Zhang C Y, Gao W, Dong J 2024 Acta Phys. Sin 73 153(in Chinses)[严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军 2024 物理学报 73 153]

    [30]

    Lee C, Park H, Kim W, Park S. 2019 Phys. Chem. Chem. Phys 21 24026

    [31]

    Lin H, Xu D K, Cheng Z Y, Li Y j, Xu L Q, Ma Y, Yang H S, Zhang Y L 2020 Appl. Surf. Sci 514 146074

    [32]

    Fan X M, Nie J H, Ying W T, Xu S Q, Gu J M, Liu S M 2021 Dalton Trans. 50 12234

    [33]

    Gao Z H, Yang S, Xu B Y, Zhang T J, Chen S W, Zhang W G, Sun X, Wang Z F, Wang X, Meng X G, Zhao Y S 2021 Angew. Chem. Int. Ed. 60 24519

  • [1] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, doi: 10.7498/aps.73.20231405
    [2] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理. 物理学报, doi: 10.7498/aps.73.20231663
    [3] 阿热帕提·夏克尔, 王林香, 李晴, 柏云凤, 穆妮热·买买提. Tm3+, Yb3+共掺Bi2WO6上转换发光材料的制备及其温度传感性质. 物理学报, doi: 10.7498/aps.72.20222143
    [4] 高伟, 邵琳, 韩珊珊, 邢宇, 张晶晶, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 基于单颗粒NaYF4微米棒的上转换白光发射特性. 物理学报, doi: 10.7498/aps.72.20221606
    [5] 陈癸伶, 马佳佳, 孙佳石, 张金苏, 李香萍, 徐赛, 张希珍, 程丽红, 陈宝玖. 试验优化设计GdTaO4:RE/Yb(RE=Tm, Er)荧光粉制备及上转换发光特性研究. 物理学报, doi: 10.7498/aps.71.20220474
    [6] 高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 单颗粒NaYF4核壳结构的能量传递特性. 物理学报, doi: 10.7498/aps.71.20221454
    [7] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, doi: 10.7498/aps.71.20211719
    [8] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, doi: 10.7498/aps.70.20211719
    [9] 高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军. 改变激发环境调控Ho3+离子的上转换发光特性. 物理学报, doi: 10.7498/aps.69.20191333
    [10] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, doi: 10.7498/aps.69.20200575
    [11] 高伟, 董军. 共掺杂Ce3+调控-NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射. 物理学报, doi: 10.7498/aps.66.204206
    [12] 毛鑫光, 王俊, 沈杰. 磁控溅射制备Er3+/Yb3+共掺杂TiO2薄膜的上转换发光特性. 物理学报, doi: 10.7498/aps.63.087803
    [13] 郑龙江, 李雅新, 刘海龙, 徐伟, 张治国. Tm3+,Yb3+共掺钨酸钙多晶材料的上转换发光及荧光温度特性. 物理学报, doi: 10.7498/aps.62.240701
    [14] 王大刚, 周亚训, 王训四, 戴世勋, 沈祥, 陈飞飞, 王森. 应用于白光显示的Tm3+/Ho3+/Yb3+共掺碲酸盐玻璃上转换发光特性研究. 物理学报, doi: 10.7498/aps.59.6256
    [15] 袁宁一, 陈效双, 丁建宁, 何泽军, 李锋, 陆卫. 溶胶-凝胶制备ZnO-SiO2复合膜的量子效应和上转换发光. 物理学报, doi: 10.7498/aps.58.2649
    [16] 甘棕松, 余 华, 李妍明, 王亚楠, 陈 晖, 赵丽娟. Tm3+/Yb3+共掺氟氧硅铝酸盐玻璃陶瓷蓝色上转换发光研究. 物理学报, doi: 10.7498/aps.57.5699
    [17] 金 哲, 聂秋华, 徐铁峰, 戴世勋, 沈 祥, 章向华. Tm3+/Yb3+共掺碲铅锌镧玻璃的能量传递和上转换发光. 物理学报, doi: 10.7498/aps.56.2261
    [18] 温 磊, 张丽艳, 杨建虎, 汪国年, 陈 伟, 胡丽丽. 掺铒氟(卤)磷碲酸盐玻璃的上转换发光性能研究. 物理学报, doi: 10.7498/aps.55.1486
    [19] 陈晓波, 刘凯, 庄健, 王国文, 陈创天. HoYb:YVO4的上转换发光研究. 物理学报, doi: 10.7498/aps.51.690
    [20] 赵丽娟, 孙聆东, 许京军, 张光寅. 用转移函数方法研究铒离子上转换发光与抽运功率的关系. 物理学报, doi: 10.7498/aps.50.63
计量
  • 文章访问数:  116
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-08-19

/

返回文章
返回