-
基于外延生长技术构建不同结构特性的核壳结构已成为调控稀土掺杂微纳晶体材料发光特性的有效技术手段之一. 为此, 本文基于多次外延生长并引入NaYF4中间隔离层, 构建了具有壳层独立发光特性NaYF4:50%Yb3+/2%Tm3+@ NaYF4@NaYF4:20%Yb3+/2%Er3+@NaYF4@NaYbF4:2%Er3+多层微米核壳晶体. 在980 nm激光激发下, 借助共聚焦显微光谱测试系统, 通过改变单颗粒微米晶体的激发位置, 研究了单颗粒核壳微米晶体不同微区内的发光和能量传递特性. 实验结果表明: 在相邻发光层之间引入NaYF4惰性壳, 不仅可实现单颗粒微米晶体区域内发光的调控, 且可有效抑制了各壳层离子间的相互作用, 实现了各壳层的多彩独立发射. 同时, 基于单颗粒核壳微米晶体不同区域内多彩发射特性, 构建具有信息可调的微纳光子学条形码. 由此可见, 本文所构建具有区域化可调发射的微米核壳结构, 可在不同的激发条件下实现其发光的多彩可调, 其丰富光谱指纹信息为单颗粒微米材料在光学防伪领域中的应用提供了新的途径.The construction of core-shell structures with different structural properties based on the epitaxial growth technique has become an effective technique for regulating the luminescence properties of micro/nanocrystals. In order to obtain richer spectral information, NaYF4:50%Yb3+/2%Tm3+@NaYF4@NaYF4:20%Yb3+/2%Er3+@NaYF4@NaYbF4:2%Er3+ multilayered core-shell microcrystals are prepared by using multiple epitaxial growth through introducing surface modifiers and controlling their reaction conditions. The XRD and SEM results clearly show that the core-shell microcrystals possess a pure hexagonal crystal structure in the form of a disk. The microdesk has a thickness of about 2.32 μm and a diameter of about 28.31 μm. The upconversion luminescence characteristics of different single microcrystal structures are investigated by a confocal microspectroscopy system. In order to realize the selective excitation and emission of a single microcrystal, the spatial distribution of luminescent ions can be controlled through introducing an intermediate isolation layer. Under 980 nm laser excitation, different excitation sites of the single microdisk exhibit different upconversion emission characteristics. The significant blue (450 and 475 nm), red (648 nm) and green (524 and 540 nm) emissions are observed, which mainly originat from Tm3+ and Er3+ radiative transitions. Meanwhile, the red and blue upconversion emission intensities of the microcrystals are improved by using various shell layers. In addition, the luminescence and energy-transfer features of single microcrystals are explored by changing the excitation position. The experimental results demonstrate that the incorporation of NaYF4 inert shells between luminescent layers can regulate luminescence and prevent ions from interacting. By utilizing the spectral fingerprint data of dopant ions in various shell layers, we create customizable micro-nano photonic barcodes and employ them for optical anti-counterfeiting detection. This study explores the use of constructed core-shell structures with luminescent tunable micron core-shell structures to acquire diverse spectral information and maintain stability through their structural properties. Thus, this core-shell structure provides a novel method for using upconversion luminescent microcrystals into micro- and nanophotonics to achieve anti-counterfeiting and display purposes.
-
Keywords:
- upconversion luminescence /
- core-shell microcrystals /
- single particles /
- luminescence regulation /
- photonics barcodes
[1] Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001Google Scholar
[2] Himmelstoß S F, Hirsch T 2019 Part. Part. Syst. Char. 36 1900235Google Scholar
[3] Hu Y, Yang Y M, Zhang X F, Wang X, Li X X, Li Y Q, Li T Y, Zhang H W 2020 J. Phys. Chem. C 124 24940Google Scholar
[4] Han Q Y, Zhao B C, Gao W, Li Y X, Sun Z Y, Wang C, Chen Y, Wang Y K, Yan X W, Dong J 2022 Phys. Chem. Chem. Phys. 24 13730.Google Scholar
[5] Zhu X Y, Zhong H X, Zhang F 2023 Acc. Mater. Res. 4 536Google Scholar
[6] Zhang C Y, Yin Q X, Ge S K, Qi J X, Han Q Y, Gao W, Wang Y K, Zhang M D, Dong J 2024 Mater. Res. Bull. 176 112801Google Scholar
[7] Patnam H, Hussain S K, Yu J S 2023 Ceram. Int. 49 2967Google Scholar
[8] Ding M Y, Dong B, Lu Y, Yang X F, Yuan Y J, Bai W F, Wu S T, Ji Z G, Lu C H, Zhang K, Zeng H B 2020 Adv. Mater. 32 2002121Google Scholar
[9] Zhou X Q, Ning L X, Qiao J W, Zhao Y F, Xiong P X, Xia Z G 2022 Nat. Commun. 13 7589Google Scholar
[10] Yao Y N, Gao Z H, Lv Y C, Lin X Q, Liu Y Y, Du Y X, Hu F Q, Zhao Y S 2019 Angew. Chem. Int. Ed. 131 13941Google Scholar
[11] Chen J B, Li M S, Sun R R, Xie Y, Reimers J R, Sun L N 2024 Adv. Funct. Mater. 34 2315276Google Scholar
[12] Ying W T, Nie J H, Fan X M, Xu S Q, Gu J M, Liu S M 2021 Adv. Opt. Mater. 9 2100197Google Scholar
[13] Zheng B Z, Fan J Y, Chen B, Qin X, Wang J, Wang F, Deng R R, Liu X G 2022 Chem. Rev. 122 5519Google Scholar
[14] Fan Y, Liu L, Zhang F 2019 Nano Today 25 68Google Scholar
[15] Han Y D, Li H Y, Wang Y B, Pan Y, Huang L, Song F, Huang W 2017 Sci. Rep. 7 1320Google Scholar
[16] Gao W, Zhang J J, Han S S, Xing Y, Shao L, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2022 Acta Phys. Sin. 71 234206 (in Chinses) [高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军 2022 物理学报 71 234206]Google Scholar
Gao W, Zhang J J, Han S S, Xing Y, Shao L, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2022 Acta Phys. Sin. 71 234206 (in Chinses)Google Scholar
[17] Gao W, Shao L, Han S S, Xing Y, Zhang J J, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2023 Acta Phys. Sin. 72 024207 (in Chinses) [高伟, 邵琳, 韩珊珊, 邢宇, 张晶晶, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军 2023 物理学报 72 024207]Google Scholar
Gao W, Shao L, Han S S, Xing Y, Zhang J J, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2023 Acta Phys. Sin. 72 024207 (in Chinses)Google Scholar
[18] He E J, Yu J J, Wang C, Jiang Y, Zuo X Z, Xu B, Wen J, Qin Y F, Wang Z J 2020 Mater. Res. Bull. 121 110613Google Scholar
[19] Yang D D, Peng Z X, Guo X, Qiao S Q, Zhao P, Zhan Q Q, Qiu J R, Yang Z M, Dong G P 2021 Adv. Opt. Mater. 9 2100044Google Scholar
[20] Jin L M, Chen X, Siu C K, Wang F, Yu S F 2017 ACS Nano 11 843Google Scholar
[21] Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Fan WF, Ying L Y, Zheng Z W, Xie Y J, Wu Y F, Yang X D, Zhang D 2021 Appl. Phys. Lett. 118 173301Google Scholar
[22] Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207 (in Chinses) [高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军 2022 物理学报 71 034207]Google Scholar
Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207 (in Chinses)Google Scholar
[23] Wu W W, Chen D Q, Zhou Y, Wang Z Y, Ji Z G 2016 J. Alloys Compd. 682 275Google Scholar
[24] Sun J, Zhang Z H, Zhao H F, Jiang H 2016 Chin. J. Lumin. 37 526 (in Chinses) [苏俊, 张振华, 赵会峰, 姜宏 2016 发光学报 37 526]Google Scholar
Sun J, Zhang Z H, Zhao H F, Jiang H 2016 Chin. J. Lumin. 37 526 (in Chinses)Google Scholar
[25] Lüthi S R, Pollnau M, Güdel H U, Hehlen M P 1999 Phys. Rev. B 60 162Google Scholar
[26] Sun T Y, Li Y H, Ho W L, Zhu Q, Chen X, Jin L M, Zhu H M, Huang B L, Lin J, Little B E, Chu S T, Wang F 2019 Nat. Commun. 10 1811Google Scholar
[27] Bai X, Song H W, Pan G H, Lei Y Q, Wang T, Ren X G, Lu S Z, Dong B, Dai Q L, Fan L B 2007 J. Phys. Chem. C 111 13611Google Scholar
[28] Mehrdel B, Nikbakht A, Aziz A A, Jameel M S, Dheyab M A, Khaniabadi P M 2022 Nanotechnology 33 082001Google Scholar
[29] Yan X W, Zhang J L, Zhang Z Y, Ding P, Han Q Y, Zhang C Y, Gao W, Dong J 2024 Acta Phys. Sin. 73 054206 (in Chinses) [严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军 2024 物理学报 73 054206]Google Scholar
Yan X W, Zhang J L, Zhang Z Y, Ding P, Han Q Y, Zhang C Y, Gao W, Dong J 2024 Acta Phys. Sin. 73 054206 (in Chinses)Google Scholar
[30] Lee C, Park H, Kim W, Park S 2019 Phys. Chem. Chem. Phys. 21 24026Google Scholar
[31] Lin H, Xu D K, Cheng Z Y, Li Y j, Xu L Q, Ma Y, Yang H S, Zhang Y L 2020 Appl. Surf. Sci. 514 146074Google Scholar
[32] Fan X M, Nie J H, Ying W T, Xu S Q, Gu J M, Liu S M 2021 Dalton Trans. 50 12234Google Scholar
[33] Gao Z H, Yang S, Xu B Y, Zhang T J, Chen S W, Zhang W G, Sun X, Wang Z F, Wang X, Meng X G, Zhao Y S 2021 Angew. Chem. Int. Ed. 60 24519Google Scholar
-
图 1 (a) NaYF4:50%Yb3+/2%Tm3+及其包覆不同壳层后微米核壳晶体的XRD图谱; (b)—(f) 相应微米晶体及其核壳晶体的SEM图谱以及相应的元素映射图, 其中(b) NaYF4:50%Yb3+/2%Tm3+; (c) Tm@Y; (d) Tm@Y@Er; (e) Tm@Y@Er@Y; (f) Tm@Y@Er@Y@Yb.
Fig. 1. (a) XRD patterns of NaYF4:50%Yb3+/2%Tm3+ with different core-shell microcrystals. (b)–(f) SEM images and element mapping of the NaYF4:50%Yb3+/2%Tm3+ with different core-shell microcrystals: (b) NaYF4:50%Yb3+/2%Tm3+; (c) Tm@Y; (d) Tm@Y@Er; (e) Tm@Y@Er@Y; (f) Tm@Y@Er@Y@Yb.
图 2 在980 nm激光激发下, (a), (b) NaYF4:50%Yb3+/2%Tm3+微米晶体包覆不同壳层阶段时不同激发位置处的上转换发射光谱, (c), (d) 发射峰面积及其红绿比与红蓝比. 插图为对应的发光图片; a, NaYF4:50%Yb3+/2%Tm3+; b, Tm@Y; c, Tm@Y@Er; d, Tm@Y@Er@Y; e, Tm@Y@Er@Y@Yb
Fig. 2. (a), (b) Upconversion emission spectra, (c), (d) emission peak areas and R/G ratio, R/B ratio NaYF4:50%Yb3+/2%Tm3+ with different core-shell microcrystals under 980 nm laser excitation. The insert is corresponding luminescence micrographs. a, NaYF4:50%Yb3+/2%Tm3+; b, Tm@Y; c, Tm@Y@Er; d, Tm@Y@Er@Y; e, Tm@Y@Er@Y@Yb.
图 3 980 nm激光激发下, (a) 单颗粒Tm@Er@Yb及(b) 单颗粒Tm@Y@Er@Y@Yb微米核壳结构在不同激发位置处的上转换发射光谱(插图为其发光图片), 以及相应的(c) 强度变化图及(d) CIE图
Fig. 3. Upconversion emission spectra of (a) Tm@Er@Yb and (b) Tm@Y@Er@Y@Yb core-shell microcrystals at different excitation conditions under 980 nm laser excitation (The insert is corresponding luminescence micrographs), and corresponding (c) emission peak area trends and (d) CIE coordinate chart.
图 4 在980 nm激光激发下, 不同微米晶体粉体样品的(a)上转换发射光谱和(b)发射峰面积, 插图为其发光图片 (a, NaYF4:50%Yb3+/2%Tm3+; b, Tm@Y; c, Tm@Y@Er; d, Tm@Y@Er@Y; e, Tm@Y@Er@Y@Yb)
Fig. 4. (a) Upconversion emission spectra and (b) emission peak areas of the different powder samples under 980 nm laser excitation. The insert is corresponding luminescence micrograps. a, NaYF4:50%Yb3+/2%Tm3+; b, Tm@Y; c, Tm@Y@Er; d, Tm@Y@Er@Y; e, Tm@Y@Er@Y@Yb.
图 5 在980 nm激光激发下, Tm@Y@Er@Y@Yb核壳微米晶体不同激发位置, 单一NaYbF4:2%Er3+, NaYF4:20%Yb3+/2%Er3+, NaYF4:50%Yb3+/2%Tm3+ 微米晶体在不同功率下的(a)—(f)上转换发射光及其(g)—(l)谱泵浦功率依赖性关系 (a), (g) NaYbF4:2%Er3+壳; (b), (h) NaYF4:20%Yb3+/2%Er3+壳; (c), (i) NaYF4:50%Yb3+/2%Tm3+核; (d), (j) NaYbF4:2%Er3+; (e), (k) NaYF4:20%Yb3+/2%Er3+; (f), (l) NaYF4:50%Yb3+/2%Tm3+
Fig. 5. (a)–(f) Upconversion emission spectra and (g)–(l) pump power dependences of Tm@Y@Er@Y@Yb microcrystals at different excitation positions and NaYbF4:2%Er3+, NaYF4:20%Yb3+/2%Er3+, NaYF4:50%Yb3+/2%Tm3+ microcrystals under 980 nm laser excitation at different powers: (a), (g) NaYbF4:2%Er3+ shell; (b), (h) NaYF4:20%Yb3+/2%Er3+ shell; (c), (i) NaYF4:50%Yb3+/2%Tm3+ shell; (d), (j) NaYbF4:2%Er3+; (e), (k) NaYF4:20%Yb3+/2%Er3+; (f), (l) NaYF4:50%Yb3+/2%Tm3+.
图 7 (a) 光子条形码防伪概念验证; (b) 980 nm激光激发下, 不同激发位置处晶体的上转换发射光谱以及相应的光子学条形码; (c) 光子学条形码的组合及验证示意图
Fig. 7. (a) Photonic barcoding proof-of-concept for anti-counterfeiting; (b) upconversion emission spectra of microcrystals and corresponding photonics barcodes under 980 nm laser excitation; (c) schematic illustration of photonics barcodes.
-
[1] Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001Google Scholar
[2] Himmelstoß S F, Hirsch T 2019 Part. Part. Syst. Char. 36 1900235Google Scholar
[3] Hu Y, Yang Y M, Zhang X F, Wang X, Li X X, Li Y Q, Li T Y, Zhang H W 2020 J. Phys. Chem. C 124 24940Google Scholar
[4] Han Q Y, Zhao B C, Gao W, Li Y X, Sun Z Y, Wang C, Chen Y, Wang Y K, Yan X W, Dong J 2022 Phys. Chem. Chem. Phys. 24 13730.Google Scholar
[5] Zhu X Y, Zhong H X, Zhang F 2023 Acc. Mater. Res. 4 536Google Scholar
[6] Zhang C Y, Yin Q X, Ge S K, Qi J X, Han Q Y, Gao W, Wang Y K, Zhang M D, Dong J 2024 Mater. Res. Bull. 176 112801Google Scholar
[7] Patnam H, Hussain S K, Yu J S 2023 Ceram. Int. 49 2967Google Scholar
[8] Ding M Y, Dong B, Lu Y, Yang X F, Yuan Y J, Bai W F, Wu S T, Ji Z G, Lu C H, Zhang K, Zeng H B 2020 Adv. Mater. 32 2002121Google Scholar
[9] Zhou X Q, Ning L X, Qiao J W, Zhao Y F, Xiong P X, Xia Z G 2022 Nat. Commun. 13 7589Google Scholar
[10] Yao Y N, Gao Z H, Lv Y C, Lin X Q, Liu Y Y, Du Y X, Hu F Q, Zhao Y S 2019 Angew. Chem. Int. Ed. 131 13941Google Scholar
[11] Chen J B, Li M S, Sun R R, Xie Y, Reimers J R, Sun L N 2024 Adv. Funct. Mater. 34 2315276Google Scholar
[12] Ying W T, Nie J H, Fan X M, Xu S Q, Gu J M, Liu S M 2021 Adv. Opt. Mater. 9 2100197Google Scholar
[13] Zheng B Z, Fan J Y, Chen B, Qin X, Wang J, Wang F, Deng R R, Liu X G 2022 Chem. Rev. 122 5519Google Scholar
[14] Fan Y, Liu L, Zhang F 2019 Nano Today 25 68Google Scholar
[15] Han Y D, Li H Y, Wang Y B, Pan Y, Huang L, Song F, Huang W 2017 Sci. Rep. 7 1320Google Scholar
[16] Gao W, Zhang J J, Han S S, Xing Y, Shao L, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2022 Acta Phys. Sin. 71 234206 (in Chinses) [高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军 2022 物理学报 71 234206]Google Scholar
Gao W, Zhang J J, Han S S, Xing Y, Shao L, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2022 Acta Phys. Sin. 71 234206 (in Chinses)Google Scholar
[17] Gao W, Shao L, Han S S, Xing Y, Zhang J J, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2023 Acta Phys. Sin. 72 024207 (in Chinses) [高伟, 邵琳, 韩珊珊, 邢宇, 张晶晶, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军 2023 物理学报 72 024207]Google Scholar
Gao W, Shao L, Han S S, Xing Y, Zhang J J, Chen B H, Han Q Y, Yan X W, Zhang C Y, Dong J 2023 Acta Phys. Sin. 72 024207 (in Chinses)Google Scholar
[18] He E J, Yu J J, Wang C, Jiang Y, Zuo X Z, Xu B, Wen J, Qin Y F, Wang Z J 2020 Mater. Res. Bull. 121 110613Google Scholar
[19] Yang D D, Peng Z X, Guo X, Qiao S Q, Zhao P, Zhan Q Q, Qiu J R, Yang Z M, Dong G P 2021 Adv. Opt. Mater. 9 2100044Google Scholar
[20] Jin L M, Chen X, Siu C K, Wang F, Yu S F 2017 ACS Nano 11 843Google Scholar
[21] Zhou Z Q, Xue J B, Zhang B P, Wang C, Yang X C, Fan WF, Ying L Y, Zheng Z W, Xie Y J, Wu Y F, Yang X D, Zhang D 2021 Appl. Phys. Lett. 118 173301Google Scholar
[22] Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207 (in Chinses) [高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军 2022 物理学报 71 034207]Google Scholar
Gao W, Sun Z Y, Guo L C, Han S S, Chen B H, Han Q Y, Yan X W, Wang Y K, Liu J H, Dong J 2022 Acta Phys. Sin. 71 034207 (in Chinses)Google Scholar
[23] Wu W W, Chen D Q, Zhou Y, Wang Z Y, Ji Z G 2016 J. Alloys Compd. 682 275Google Scholar
[24] Sun J, Zhang Z H, Zhao H F, Jiang H 2016 Chin. J. Lumin. 37 526 (in Chinses) [苏俊, 张振华, 赵会峰, 姜宏 2016 发光学报 37 526]Google Scholar
Sun J, Zhang Z H, Zhao H F, Jiang H 2016 Chin. J. Lumin. 37 526 (in Chinses)Google Scholar
[25] Lüthi S R, Pollnau M, Güdel H U, Hehlen M P 1999 Phys. Rev. B 60 162Google Scholar
[26] Sun T Y, Li Y H, Ho W L, Zhu Q, Chen X, Jin L M, Zhu H M, Huang B L, Lin J, Little B E, Chu S T, Wang F 2019 Nat. Commun. 10 1811Google Scholar
[27] Bai X, Song H W, Pan G H, Lei Y Q, Wang T, Ren X G, Lu S Z, Dong B, Dai Q L, Fan L B 2007 J. Phys. Chem. C 111 13611Google Scholar
[28] Mehrdel B, Nikbakht A, Aziz A A, Jameel M S, Dheyab M A, Khaniabadi P M 2022 Nanotechnology 33 082001Google Scholar
[29] Yan X W, Zhang J L, Zhang Z Y, Ding P, Han Q Y, Zhang C Y, Gao W, Dong J 2024 Acta Phys. Sin. 73 054206 (in Chinses) [严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军 2024 物理学报 73 054206]Google Scholar
Yan X W, Zhang J L, Zhang Z Y, Ding P, Han Q Y, Zhang C Y, Gao W, Dong J 2024 Acta Phys. Sin. 73 054206 (in Chinses)Google Scholar
[30] Lee C, Park H, Kim W, Park S 2019 Phys. Chem. Chem. Phys. 21 24026Google Scholar
[31] Lin H, Xu D K, Cheng Z Y, Li Y j, Xu L Q, Ma Y, Yang H S, Zhang Y L 2020 Appl. Surf. Sci. 514 146074Google Scholar
[32] Fan X M, Nie J H, Ying W T, Xu S Q, Gu J M, Liu S M 2021 Dalton Trans. 50 12234Google Scholar
[33] Gao Z H, Yang S, Xu B Y, Zhang T J, Chen S W, Zhang W G, Sun X, Wang Z F, Wang X, Meng X G, Zhao Y S 2021 Angew. Chem. Int. Ed. 60 24519Google Scholar
计量
- 文章访问数: 1034
- PDF下载量: 30
- 被引次数: 0