-
在980 nm近红外光激发下,通过共掺杂Ce3+离子调控六方相NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射.实验结果表明,当掺杂Ce3+离子浓度从0增加到12.0%时,Ho3+离子的上转换荧光发射实现了由绿光向红光的转变,其红绿比提高了近24倍.根据Ho3+离子的能级结构发现,Ho3+离子的红光发射源自5F5能级到5I8能级的辐射跃迁,因此要增强红光发射,必须提高该能级粒子数布居.Ho3+与Ce3+离子之间相近的能级差促使它们之间产生了共振交叉弛豫,从而有效地提高了Ho3+离子5F5能级的粒子数布居,增强了红光发射.同时对Ho3+离子的上转换调控机理进行讨论,并借助不同的激发策略,进一步证实了Ho3+与Ce3+离子之间相互作用的发生.
-
关键词:
- -NaLuF4纳米晶体 /
- 上转换发光 /
- 交叉弛豫 /
- 荧光调控
Rare-earth-doped up-conversion (UC) fluoride materials have been widely used in phosphors, color displays, optical storages, solid-state lasers, solar cells and biomedical imaging, due to the fact that their low phonon energy can effectively suppress the nonradiative multiphonon relaxation process. In this work, the NaLuF4:Yb3+/Ho3+ nanocrystals are successfully synthesized by a facile solvothermal method. The crystal structure and morphology of the NaLuF4 nanocrystals are characterized by the X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) respectively. The diffraction peaks are well consistent with those of high-purity hexagonal NaLuF4 (JCPDS No. 77-2042, P63/m space group). The TEM image reveals that the product is composed of monodisperse hexagonal rods with an average length of about 170 nm and an average diameter of 30 nm. The crystal structure and morphology do not present obvious change with the increasing Ce3+ ion concentration, which is due to the similarity in ion radius between Ce3+ and Lu3+. Under 980 nm excitation, the UC emissions of -NaLuF4:Yb3+/Ho3+ nanocrystals with different Ce3+ codoping concentrations are carefully studied. The strong green and red UC emissions of Ho3+ ions are observed in -NaLuF4 nanocrystals. It can be found that the UC emission of Ho3+ ions is tuned from green to red in -NaLuF4 nanocrystals through increasing Ce3+ ion concentrations from 0 to 12%, and the red-to-green (R/G) ratio is enhanced from 0.34 to 8.44. According to the level structure of Ho3+ ions, the red UC emission originates from the excited state 5F5. However, the population of the 5F5 excited state mainly depends on the two nonradiative relaxation processes of 5S2/5F45F5 and 5I65I7 transitions. In fact, the two nonradiative relaxation processes are very difficult to occur according to multiphonon nonradiative relaxation rate. When Ce3+ ion is introduced into the system, the red UC emission intensity and R/G ratio of Ho3+ are increased, because the energy gap from the excited state 5F7/2 to the ground state 2F5/2 is about 3000 cm-1 for Ce3+ ions, which is similar to the gaps of 5S2/5F45F5 and 5I65I7 transitions of Ho3+ ions. According to the energy conservation law, the two inefficient nonradiative processes from the 5S2/5F4 and 5I6 states of Ho3+ ions are substituted in order by resonant cross relaxation (CR) processes 5S2 (5F4) (Ho3+) + 2F5/2 (Ce3+5F5 (Ho3+) + 2F7/2 (Ce3+) and 5I6 (Ho3+) + 2F5/2 (Ce3+)5I7 (Ho3+) +2F7/2 (Ce3+) between Ho3+ and Ce3+ ions. These two resonant CR processes can transfer populations from the 5S2/5F4 state and 5I6 state to the 5F5 state and its intermediate 5I7 state, respectively. The resonant modality and the strong interaction between Ho3+ and Ce3+ ions are employed to enhance the red emission and suppress the green emission. The occurrence of CR process between Ho3+ and Ce3+ ions is further proved by the down-conversion emission spectra of Ho3+ ions under 532 and 980 nm laser excitation, respectively. We demonstrate that the highly efficient red UC emission of -NaLuF4:Yb3+/Ho3+/Ce3+ nanocrystals offers opportunities as desired optical materials for color displays, anticounterfeiting techniques and multiplexed labeling applications.-
Keywords:
- -NaLuF4 nanocrystals /
- upconversion luminescence /
- cross relaxation /
- fluorescence regulation
[1] Menyuk N, Dwight K, Pinaud F 1972 Appl. Phys. Lett. 21 159
[2] Stockman M 2004 Nat. Mater. 3 423
[3] Cheben P, Monte F, Worsfold D, Carlsson D, Grover C, Mackenzie J 2000 Nature 408 64
[4] Rumbles G 2001 Nature 409 572
[5] Huang X, Han S, Huang W, Liu X G 2013 Chem. Soc. Rev. 42 173
[6] Lim M E, Lee Y L, Zhang Y, Chu J H 2012 Biomaterials 33 1912
[7] Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese)[高伟, 董军, 王瑞博, 王朝晋, 郑海荣2016物理学报65 084205]
[8] Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870
[9] Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Scientia Sinica Phys. Mech. Astron. 40 287 (in Chinese)[高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生2010中国科学:物理学力学天文学40 287]
[10] Chen G Y, Ohulchanskyy T Y, Kachynski A, Ǻgren H, Prasad P N 2011 ACS Nano 5 4981
[11] Ding M Y, Chen D Q, Wan Z Y, Zhou Y, Zhong J S, Xi J H, Ji Z G 2015 J. Mater. Sci. 50 6779
[12] Ai Y, Tu D Y, Zheng W, Liu Y S, Kong J T, Hu P, Chen Z, Huang M D, Chen X Y 2013 Nanoscale 5 6430
[13] Heer S, Kompe K, Gudel H U, Haase M 2004 Adv. Mater. 16 2102
[14] Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721
[15] Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870
[16] Wang L L, Lan M, Liu Z Y, Qin G S, Wu C F, Wang X, Qin W P, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485
[17] Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Cryst. Eng. Comm. 13 3782
[18] Yang T S, Sun Y, Liu Q, Feng W, Yang P Y, Li F Y 2012 Biomaterials 33 3733
[19] He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505
[20] Liu Q, Sun Y, Yang T S, Feng W, Li C G, Li F Y 2011 J. Am. Chem. Soc. 133 17122
[21] Boyer J C, Vetrone F, Cuccia L A, Capobianco J A 2006 J. Am. Chem. Soc. 128 7444
[22] Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168
[23] He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin. 62 237803 (in Chinese)[何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强2013物理学报62 237803]
[24] Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683
[25] Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G 2015 Nat. Nanotech. 10 237
[26] Chen G Y, Liu H C, Somesfalean G, Liang H J, Zhang Z G 2009 Nanotechnology 20 385704
[27] Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327
[28] Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumine. 179 562
[29] Zhu W, Zhao S L, Liang Z Q, Yang Y X, Zhang J J, Xu Z 2016 J. Alloy Compd. 659 146
[30] Shannon R D 1976 Acta Crystallogr. A 32 751
[31] Dou Q Q, Zhang Y 2011 Langmuir 27 13236
[32] Gilliland G D, Powell R C 1988 Phys. Rev. B 38 9958
[33] Schmidt T, Mller G, Spanhel L 1998 Chem. Mater. 10 65
[34] Wang F, Liu X G 2009 Chem. Soc. Rev. 38 976
-
[1] Menyuk N, Dwight K, Pinaud F 1972 Appl. Phys. Lett. 21 159
[2] Stockman M 2004 Nat. Mater. 3 423
[3] Cheben P, Monte F, Worsfold D, Carlsson D, Grover C, Mackenzie J 2000 Nature 408 64
[4] Rumbles G 2001 Nature 409 572
[5] Huang X, Han S, Huang W, Liu X G 2013 Chem. Soc. Rev. 42 173
[6] Lim M E, Lee Y L, Zhang Y, Chu J H 2012 Biomaterials 33 1912
[7] Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese)[高伟, 董军, 王瑞博, 王朝晋, 郑海荣2016物理学报65 084205]
[8] Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870
[9] Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Scientia Sinica Phys. Mech. Astron. 40 287 (in Chinese)[高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生2010中国科学:物理学力学天文学40 287]
[10] Chen G Y, Ohulchanskyy T Y, Kachynski A, Ǻgren H, Prasad P N 2011 ACS Nano 5 4981
[11] Ding M Y, Chen D Q, Wan Z Y, Zhou Y, Zhong J S, Xi J H, Ji Z G 2015 J. Mater. Sci. 50 6779
[12] Ai Y, Tu D Y, Zheng W, Liu Y S, Kong J T, Hu P, Chen Z, Huang M D, Chen X Y 2013 Nanoscale 5 6430
[13] Heer S, Kompe K, Gudel H U, Haase M 2004 Adv. Mater. 16 2102
[14] Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721
[15] Zeng S J, Xiao J J, Yang Q B, Hao J H 2012 J. Mater. Chem. 22 9870
[16] Wang L L, Lan M, Liu Z Y, Qin G S, Wu C F, Wang X, Qin W P, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485
[17] Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Cryst. Eng. Comm. 13 3782
[18] Yang T S, Sun Y, Liu Q, Feng W, Yang P Y, Li F Y 2012 Biomaterials 33 3733
[19] He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505
[20] Liu Q, Sun Y, Yang T S, Feng W, Li C G, Li F Y 2011 J. Am. Chem. Soc. 133 17122
[21] Boyer J C, Vetrone F, Cuccia L A, Capobianco J A 2006 J. Am. Chem. Soc. 128 7444
[22] Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168
[23] He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin. 62 237803 (in Chinese)[何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强2013物理学报62 237803]
[24] Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683
[25] Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G 2015 Nat. Nanotech. 10 237
[26] Chen G Y, Liu H C, Somesfalean G, Liang H J, Zhang Z G 2009 Nanotechnology 20 385704
[27] Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327
[28] Gao W, Dong J, Liu J H, Yan X W 2016 J. Lumine. 179 562
[29] Zhu W, Zhao S L, Liang Z Q, Yang Y X, Zhang J J, Xu Z 2016 J. Alloy Compd. 659 146
[30] Shannon R D 1976 Acta Crystallogr. A 32 751
[31] Dou Q Q, Zhang Y 2011 Langmuir 27 13236
[32] Gilliland G D, Powell R C 1988 Phys. Rev. B 38 9958
[33] Schmidt T, Mller G, Spanhel L 1998 Chem. Mater. 10 65
[34] Wang F, Liu X G 2009 Chem. Soc. Rev. 38 976
计量
- 文章访问数: 6008
- PDF下载量: 155
- 被引次数: 0