搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声场中气泡运动规律及其与枝晶相互作用机制

张心怡 吴文华 王建元 张颖 翟薇 魏炳波

引用本文:
Citation:

超声场中气泡运动规律及其与枝晶相互作用机制

张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波
cstr: 32037.14.aps.73.20240721

Motion law of cavitation bubbles in ultrasonic field and mechanism of their interaction with dendrites

Zhang Xin-Yi, Wu Wen-Hua, Wang Jian-Yuan, Zhang Ying, Zhai Wei, Wei Bing-Bo
cstr: 32037.14.aps.73.20240721
PDF
HTML
导出引用
  • 采用有限元模拟和高速摄影实验研究了液体中单个气泡在超声作用下的振荡及溃灭规律, 并揭示了气泡空化与邻近枝晶间的相互作用机制. 结果表明, 增大驱动声压促使气泡振荡模式由体积振荡转变为分裂振荡, 从而显著地提升液体中的瞬态压强和流动速度. 当气泡下方存在一个枝晶时, 随着驱动声压的增加, 二次分枝的断裂模式发生从高周疲劳断裂向低周疲劳断裂再到过载断裂的转变, 且断裂周期呈幂函数下降趋势. 气泡距离枝晶越近, 压缩状态下气泡的纵向半径逐渐大于横向半径, 且压缩时间增加, 最小气泡体积降低. 另外, 气泡与枝晶距离的减小导致气泡溃灭产生的最大压强显著降低, 而最大流速呈现先增大后降低的趋势. 若二次分枝的根部半径减小或长度增加, 二次分枝疲劳断裂周期数显著减小, 从而更容易诱发枝晶碎断. 理论计算的气泡膨胀收缩和二次分枝断裂过程与实验结果基本一致, 表明本文构建的模型能够准确预测超声场中的气泡运动及其与枝晶相互作用过程.
    Ultrasound treatment (UST) has been demonstrated to be an effective approach to refining the microstructures of metallic alloys during solidification. The cavitation-induced fragmentation is considered as the major mechanism for grain refinement in the recent study, but the interaction between dynamic bubble motion and dendrite behaviour has been rarely investigated previously. In this work, the dynamic behaviour of cavitation bubbles and their interactions with succinonitrile (SCN)-2% (mole fraction) water organic transparent alloy are systematically investigated by high-speed digital image technique and numerical simulation. It is found that increasing the driving pressure transforms the bubble oscillation mode from volume oscillation to splitting oscillation, which significantly enhances the transient pressure and flow strength in the liquid. When a dendrite exists below the bubble, the fracture mode of the secondary branch undergoes a transition from high peripheral fatigue fracture to low peripheral fatigue fracture and to overload fracture with the increase of the driving acoustic pressure, and the fracture period is shortened in the form of a power function trend. The closer the bubble is to the dendrite, the longeritudinal radius of the bubble is gradually larger than the transverse radius during compression, and with the bubble shrink time increasing, the minimum bubble volume decreases. In addition, the decrease in distance between bubbles and dendrites leads to a significant reduction in the maximum pressure generated by bubble collapse, while the maximum flow rate shows a trend of first increasing and then decreasing. When the root radius of the secondary branch decreases or its length increases, the number of fatigue fracture cycles of the secondary branch decreases significantly. The calculated bubble expansion and contraction and secondary dendrite rupture processes are basically consistent with the experimental results, which indicates that the model constructed in this work can accurately predict the bubble motion and its interaction with dendrite in ultrasonic field.
      通信作者: 翟薇, zhaiwei322@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52088101, 52130405)和陕西省自然科学基础研究计划(批准号: 2023-JC-JQ-28)资助的课题.
      Corresponding author: Zhai Wei, zhaiwei322@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52088101, 52130405) and the Basic Research Project of Shaanxi Natural Science Foundation, China (Grant No. 2023-JC-JQ-28).
    [1]

    He L, Wu M, Li L, Hao H 2006 Appl. Phys. Lett. 89 131504Google Scholar

    [2]

    Huang H, Qin L, Tang H B, Shu D, Yan W T, Sun B D, Mi J W 2021 Ultrason. Sonochem. 80 105832Google Scholar

    [3]

    Wei X, Li X L, Zhang L Q, Lü Q G 2022 Int. J. Heat Mass Transfer 192 122914Google Scholar

    [4]

    Wu W, Wang D, Zhai W, Wang J, Wei B 2023 J. Appl. Phys. 133 115102Google Scholar

    [5]

    Sander J R G, Zeiger B W, Suslick K S 2014 Ultrason. Sonochem. 21 1908Google Scholar

    [6]

    Cui B, Chen K, Yang Y, Lü Y, Zhang F, Liu S 2024 Mater. Chem. Phys. 318 129297Google Scholar

    [7]

    Wang S, Kang J, Zhang X, Guo Z 2018 Ultrasonics 83 26Google Scholar

    [8]

    Shu D, Sun B D, Mi J W, Grant P S 2012 Metall. Mater. Trans. A 43 3755Google Scholar

    [9]

    Priyadarshi A, Khavari M, Subroto T, Conte M, Prentice P, Pericleous K, Eskin D, Durodola J, Tzanakis I J E 2021 Ultrason. Sonochem. 70 105260Google Scholar

    [10]

    Wang B, Tan D Y, Lee T L, Khong J C, Wang F, Eskin D, Connolley T, Fezzaa K, Mi J W 2018 Acta Mater. 144 505Google Scholar

    [11]

    马艳, 林书玉, 徐洁 2018 物 理学报 67 034301Google Scholar

    Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301Google Scholar

    [12]

    Qu W X, Xie Y H, Shen Y, Han J, Zhu T 2017 Math. Model. Eng. Probl. 4 173Google Scholar

    [13]

    Lind S J, Phillips T N 2012 Theor. Comput. Fluid Dyn. 26 245Google Scholar

    [14]

    Samiei E, Shams M, Ebrahimi R 2011 Eur. J. Mech. B. Fluids 30 41Google Scholar

    [15]

    吴学由, 梁金福 2021 物 理学 报 70 184301Google Scholar

    Wu X Y, Liang J F 2021 Acta Phys. Sin. 70 184301Google Scholar

    [16]

    Wang X J, Ning Z, Lü M, Yao J S, Sun C H 2022 J. Phys. Soc. Jpn 91 014401Google Scholar

    [17]

    Cao S, Wang G, Coutier-Delgosha O, Wang K 2021 J. Fluid Mech. 907 A17Google Scholar

    [18]

    Shan M L, Yang Y, Kan X F, Yin C, Han Q B 2024 Chin. Phys. B 33 064701Google Scholar

    [19]

    张颖, 吴文华, 王建元, 翟薇 2022 物理学报 71 244303Google Scholar

    Zhang Y, Wu W H, Wang J Y, Zhai W 2022 Acta Phys. Sin. 71 244303Google Scholar

    [20]

    Hosseinkhah N, Chen H, Matula T J, Burns P N, Hynynen K 2013 J. Acoust. Soc. Am. 134 1875Google Scholar

    [21]

    Delale C F, Pasinlioğlu Ş 2023 Phys. Fluids 35 023330Google Scholar

    [22]

    Zakerzadeh R, Zunino P 2018 Meccanica 54 101Google Scholar

    [23]

    秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡 2021 物理学报 70 154701Google Scholar

    Qian D, Zhou Q Q, Li Z Y, Wang W, Wan M X, Feng Y 2021 Acta Phys. Sin. 70 154701Google Scholar

    [24]

    Wang S, Guo Z P, Zhang X P, Zhang A, Kang J W 2019 Ultrason. Sonochem. 51 160Google Scholar

    [25]

    Murakami K, Yamakawa Y, Zhao J, Johnsen E, Ando K 2021 J. Fluid Mech. 924 A38Google Scholar

    [26]

    Chen X S, Bayanheshig, Jiao Q B, Tan X, Wang W 2021 Int. J. Heat Mass Transfer 171 121074Google Scholar

    [27]

    Wang S, Kang J, Guo Z P, Lee T L, Mi J W 2018 Acta Mater. 165 388Google Scholar

    [28]

    Wu W H, Wang J Y, Zhai W, Wei B B 2023 Metall. Mater. Trans. B 54 1845Google Scholar

  • 图 1  超声场中气泡振荡和溃灭模型的几何示意 (a) 单个气泡运动模型; (b) 气泡与枝晶间相互作用模型; 1, 变幅杆; 2, 气泡; 3, SCN-H2O溶液; 4, SCN枝晶

    Fig. 1.  Geometrical schematic of the bubble oscillation and collapse model within the ultrasonic field: (a) Model of single bubble motion; (b) model of bubble-dendrite interaction; 1, horn; 2, bubble; 3, SCN-H2O solution; 4, SCN dendrite.

    图 2  不同声压振幅条件下的气泡形貌和声场及流场分布 (a) Pa = 0.4PB; (b) Pa = PB

    Fig. 2.  Bubble morphology and distributions of acoustic field and flow field with different ultrasonic amplitudes: (a) Pa = 0.4PB; (b) Pa = PB.

    图 3  气泡动力学与超声振幅的相关性 (a) 气泡体积随时间的变化; (b) 最大声压及最大声流与声压振幅 Pa 的关系

    Fig. 3.  Correlation between bubble dynamics and ultrasonic amplitude: (a) Bubble volume versus time; (b) maximum sound pressure and maximum sound flow versus sound pressure amplitude Pa.

    图 4  声压幅值 0.4PB 时气泡振荡过程中二次分枝上应力分布 (a)二次分枝下表面应力分布; (b) 不同高度二次分枝根部应力

    Fig. 4.  Stress distribution on the secondary branch during bubble oscillation at a sound pressure amplitude of 0.4PB: (a) Stress distribution on the lower surface of the secondary branch; (b) stress on the secondary branch root at different heights.

    图 5  不同声压条件下二次分枝偏转角度随时间变化 (a) Pa = 0.4PB; (b) Pa = PB

    Fig. 5.  Changes of the deflection angle of the secondary branch with time under different sound pressures: (a) Pa = 0.4PB; (b) Pa = PB.

    图 6  不同声压条件下二次分枝断裂机制 (a) 0.4PBPB 振幅下气泡内外压差; (b) 0.4PB 驱动声压下A点应力随时间的变化; (c) PB 驱动声压下 A 点应力随时间的变化; (d) 分枝断裂所需弯折周期随声压幅值 Pa 的变化

    Fig. 6.  Mechanism of secondary branch breakage under different sound pressures: (a) Pressure difference between inside and outside the bubble at 0.4PB and PB; (b) variation of stress at point A with time at the ultrasonic amplitude of 0.4PB; (c) variation of stress at point A with time at the ultrasonic amplitude of PB; (d) variation of fragmentation cycle number with sound pressure amplitude Pa.

    图 7  声压振幅 PB 条件下气泡体积及最大压强与枝晶距离的相关性 (a)—(c) 气泡顶部开始凹陷时刻的压强分布图; (d) 气泡体积随时间变化, 其中插图为气泡体积最小时的形貌; (e) 流体中最大压强随时间的变化规律

    Fig. 7.  Correlation of bubble volume and maximum pressure with the distance of dendrites under acoustic pressure amplitude PB: (a)–(c) Pressure distributions at the moment when the top of the bubble starts to dimple; (d) variation of bubble volume with time, where the sugfigure shows the morphology of the bubble with the smallest volume; (e) evolution of the maximum pressure in the fluid with time.

    图 8  Pa = PB 条件下间距h对气泡溃灭和二次分支断裂的作用规律 (a) 气泡溃灭在流体中产生的最大压强和流速; (b) 二次分枝上最大应力及其断裂所需时间的变化规律

    Fig. 8.  Effect of distance h on the bubble collapse and secondary branch fragmentatio Pa = PB: (a) Maximum pressure and flow rate in the fluid produced by bubble collapse; (b) variation of the maximum stress on the secondary branch and fragmentation cycle number.

    图 9  声压幅值 0.4PB 作用下二次分枝根部A点应力和断裂周期与其根部半径 r 和长度 L 的关系 (a) L = 100 μm 时A点应力随时间变化; (b) r = 3 μm时A点一个周期内的平均应力与 L 的相关性; (c) 断裂周期与 rL 的关系

    Fig. 9.  Relationship of the stress at point A and fragmentation cycle number to root radius r and length L of the secondary branch at Pa = 0.4PB: (a) Stress versus time for L = 100 μm; (b) correlation of the average stress over a cycle with L for r = 3 μm; (c) fragmentation cycle number versus r and L.

    图 10  数值模拟与 K-M 方程计算的气泡体积随时间的变化 (a) R0 = 10 μm; (b) R0 = 50 μm

    Fig. 10.  Comparison of the numerical results and K-M equation for volume oscillation: (a) R0 = 10 μm; (b) R0 = 50 μm.

    图 11  超声作用下气泡与枝晶动态相互作用的实验观测和数值模拟对比 (a) 实验观测; (b) 数值模拟

    Fig. 11.  Comparison of dynamic interaction between bubbles and dendrites by experimental observations and numerical simulation under ultrasound: (a) Experimental observations; (b) numerical simulation.

    图 12  二次分枝根部应力和气泡形貌与时间的相关性 (a) 根部应力变化的模拟结果; (b) 气泡半径变化的实验验证

    Fig. 12.  Correlation of secondary branch root stress and bubble morphology with time: (a) Simulation results of root stress variation; (b) experimental validation of bubble radius variation.

    表 1  声场和流场计算所用物理量数值

    Table 1.  Values of physical parameters used in sound and flow field calculations.

    物理量 单位 数值
    气泡初始半径 R0 μm 50
    液体密度 ρl [24] kg/m3 970
    饱和蒸汽压 Pv [25] Pa 2330
    表面张力 σg [24] 10–2 N/m 3.85
    液体声速 cl [26] m/s 1500
    液体黏度 μl [24] 10–3 Pa·s 2.66
    液体静压力 P0 105 Pa 1.013
    超声频率 f kHz 20
    气体比热系数 γ [26] / 1.4
    气体热扩散系数 κ [26] 105 m2/s 2.19
    SCN的杨氏模量 E [19] 1011 Pa 2.11
    SCN泊松比 ν [19] / 0.33
    下载: 导出CSV
  • [1]

    He L, Wu M, Li L, Hao H 2006 Appl. Phys. Lett. 89 131504Google Scholar

    [2]

    Huang H, Qin L, Tang H B, Shu D, Yan W T, Sun B D, Mi J W 2021 Ultrason. Sonochem. 80 105832Google Scholar

    [3]

    Wei X, Li X L, Zhang L Q, Lü Q G 2022 Int. J. Heat Mass Transfer 192 122914Google Scholar

    [4]

    Wu W, Wang D, Zhai W, Wang J, Wei B 2023 J. Appl. Phys. 133 115102Google Scholar

    [5]

    Sander J R G, Zeiger B W, Suslick K S 2014 Ultrason. Sonochem. 21 1908Google Scholar

    [6]

    Cui B, Chen K, Yang Y, Lü Y, Zhang F, Liu S 2024 Mater. Chem. Phys. 318 129297Google Scholar

    [7]

    Wang S, Kang J, Zhang X, Guo Z 2018 Ultrasonics 83 26Google Scholar

    [8]

    Shu D, Sun B D, Mi J W, Grant P S 2012 Metall. Mater. Trans. A 43 3755Google Scholar

    [9]

    Priyadarshi A, Khavari M, Subroto T, Conte M, Prentice P, Pericleous K, Eskin D, Durodola J, Tzanakis I J E 2021 Ultrason. Sonochem. 70 105260Google Scholar

    [10]

    Wang B, Tan D Y, Lee T L, Khong J C, Wang F, Eskin D, Connolley T, Fezzaa K, Mi J W 2018 Acta Mater. 144 505Google Scholar

    [11]

    马艳, 林书玉, 徐洁 2018 物 理学报 67 034301Google Scholar

    Ma Y, Lin S Y, Xu J 2018 Acta Phys. Sin. 67 034301Google Scholar

    [12]

    Qu W X, Xie Y H, Shen Y, Han J, Zhu T 2017 Math. Model. Eng. Probl. 4 173Google Scholar

    [13]

    Lind S J, Phillips T N 2012 Theor. Comput. Fluid Dyn. 26 245Google Scholar

    [14]

    Samiei E, Shams M, Ebrahimi R 2011 Eur. J. Mech. B. Fluids 30 41Google Scholar

    [15]

    吴学由, 梁金福 2021 物 理学 报 70 184301Google Scholar

    Wu X Y, Liang J F 2021 Acta Phys. Sin. 70 184301Google Scholar

    [16]

    Wang X J, Ning Z, Lü M, Yao J S, Sun C H 2022 J. Phys. Soc. Jpn 91 014401Google Scholar

    [17]

    Cao S, Wang G, Coutier-Delgosha O, Wang K 2021 J. Fluid Mech. 907 A17Google Scholar

    [18]

    Shan M L, Yang Y, Kan X F, Yin C, Han Q B 2024 Chin. Phys. B 33 064701Google Scholar

    [19]

    张颖, 吴文华, 王建元, 翟薇 2022 物理学报 71 244303Google Scholar

    Zhang Y, Wu W H, Wang J Y, Zhai W 2022 Acta Phys. Sin. 71 244303Google Scholar

    [20]

    Hosseinkhah N, Chen H, Matula T J, Burns P N, Hynynen K 2013 J. Acoust. Soc. Am. 134 1875Google Scholar

    [21]

    Delale C F, Pasinlioğlu Ş 2023 Phys. Fluids 35 023330Google Scholar

    [22]

    Zakerzadeh R, Zunino P 2018 Meccanica 54 101Google Scholar

    [23]

    秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡 2021 物理学报 70 154701Google Scholar

    Qian D, Zhou Q Q, Li Z Y, Wang W, Wan M X, Feng Y 2021 Acta Phys. Sin. 70 154701Google Scholar

    [24]

    Wang S, Guo Z P, Zhang X P, Zhang A, Kang J W 2019 Ultrason. Sonochem. 51 160Google Scholar

    [25]

    Murakami K, Yamakawa Y, Zhao J, Johnsen E, Ando K 2021 J. Fluid Mech. 924 A38Google Scholar

    [26]

    Chen X S, Bayanheshig, Jiao Q B, Tan X, Wang W 2021 Int. J. Heat Mass Transfer 171 121074Google Scholar

    [27]

    Wang S, Kang J, Guo Z P, Lee T L, Mi J W 2018 Acta Mater. 165 388Google Scholar

    [28]

    Wu W H, Wang J Y, Zhai W, Wei B B 2023 Metall. Mater. Trans. B 54 1845Google Scholar

  • [1] 王孟莎, 徐强, 聂腾飞, 罗欣怡, 郭烈锦. 电解液浓度对光电极表面气泡演化及传质特性的影响. 物理学报, 2024, 73(18): 188201. doi: 10.7498/aps.73.20240533
    [2] 申潇卓, 吴鹏飞, 林伟军. 脉动气泡在黏性介质中的声发射. 物理学报, 2024, 73(17): 174701. doi: 10.7498/aps.73.20240826
    [3] 许鑫萌, 娄钦. 剪切增稠幂律流体中单气泡上升动力学行为的格子Boltzmann方法研究. 物理学报, 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [4] 张颖, 吴文华, 王建元, 翟薇. 超声场中气泡稳态空化对枝晶生长过程的作用机制. 物理学报, 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [5] 秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡. 组织内包膜微泡声空化动力学及其力学效应分析. 物理学报, 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [6] 李想, 陈勇, 封皓, 綦磊. 声波激励下管路轴向分布双气泡动力学特性分析. 物理学报, 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [7] 苗博雅, 安宇. 两种气泡混合的声空化. 物理学报, 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [8] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的近平板圆孔气泡动力学行为研究. 物理学报, 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [9] 刘云龙, 汪玉, 张阿漫. 有倾角的竖直壁面附近气泡与自由面相互作用研究. 物理学报, 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [10] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟. 物理学报, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [11] 沈壮志, 吴胜举. 声场中气泡群的动力学特性. 物理学报, 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [12] 李芸, 孙华. 开口共振环型球状变形器的设计与模拟. 物理学报, 2011, 60(9): 094103. doi: 10.7498/aps.60.094103
    [13] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性. 物理学报, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [14] 和兴锁, 邓峰岩, 吴根勇, 王睿. 对于具有大范围运动和非线性变形的柔性梁的有限元动力学建模. 物理学报, 2010, 59(1): 25-29. doi: 10.7498/aps.59.25
    [15] 陈云, 康秀红, 李殿中. 自由枝晶生长相场模型的自适应有限元法模拟. 物理学报, 2009, 58(1): 390-398. doi: 10.7498/aps.58.390
    [16] 汤 波, 李俊峰, 王天舒. 水珠滴落的最小二乘粒子有限元方法模拟. 物理学报, 2008, 57(11): 6722-6729. doi: 10.7498/aps.57.6722
    [17] 高学鹏, 李新涛, 郄喜望, 吴亚萍, 李喜孟, 李廷举. 功率超声对Al-Si合金凝固过程中溶质偏析的抑制效应. 物理学报, 2007, 56(2): 1188-1194. doi: 10.7498/aps.56.1188
    [18] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟. 物理学报, 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [19] 陈 谦, 邹欣晔, 程建春. 超声波声孔效应中气泡动力学的研究. 物理学报, 2006, 55(12): 6476-6481. doi: 10.7498/aps.55.6476
    [20] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
计量
  • 文章访问数:  1511
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-23
  • 修回日期:  2024-08-14
  • 上网日期:  2024-08-16
  • 刊出日期:  2024-09-20

/

返回文章
返回