搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边界元法的近平板圆孔气泡动力学行为研究

刘云龙 张阿漫 王诗平 田昭丽

引用本文:
Citation:

基于边界元法的近平板圆孔气泡动力学行为研究

刘云龙, 张阿漫, 王诗平, 田昭丽

Study on bubble dynamics near plate with hole based on boundary element method

Liu Yun-Long, Zhang A-Man, Wang Shi-Ping, Tian Zhao-Li
PDF
导出引用
  • 研究了带有圆孔的平板附近气泡动力学特性. 基于不可压缩势流理论, 建立了平板圆形破口附近气泡运动数值模型, 并针对气泡初始位置距离破口很近而导致计算结果发散的数值缺陷, 采用气泡壁和壁面融合的方法, 将流场分离为两个半无限域问题进行求解, 实现了在不同无量纲参数范围内的数值模拟, 数值结果与实验结果符合良好. 通过对圆孔附近气泡运动特性的研究发现, 圆孔对气泡的影响基本与壁面相反, 在膨胀阶段对气泡产生腔吸作用, 收缩阶段产生排斥, 在特定的工况下会产生对射流现象. 最后分析了气泡壁与壁面融合, 流场分离后的气泡动态特性以及各工况参数对其影响规律.
    In this work the bubble dynamics near a plate with circular hole is investigated. Numerical model for bubble dynamics is established based on incompressible potential theory. To overcome the numerical limitation of traditional boundary element method for the case with small initial distance between bubble and the edge of hole, the fluid domain is divided into two semi-infinite domains which are solved separately by fusing the bubble wall and the plate wall together, by which numerical simulation in various parameter ranges is implemented. The numerical results match the experimental ones well. Through the analysis of bubble dynamics near circular hole, we find that the influence of hole is opposite to that of solid wall. During the expansion phase, cavity-attraction effect is exerted on the bubble, while the bubble is pushed away during the collapsing phase. In some specific cases, opposite-jets are formed under the conjunction of solid plate and circular hole. Finally, the case where bubble wall and solid wall are fused together is analyzed to study the bubble dynamics after the separation of fluid domain and the influences of no-dimensional parameters.
    • 基金项目: 国家自然科学基金(批准号: 50939002, 51222904)和 国家安全重大基础研究项目(批准号: 613157020102)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50939002, 51222904) and the National Security Major Basic Research Program of China (Grant No. 613157020102).
    [1]

    Cole R H 1948 Underwater Explosion (1st Ed.) (New Jersey: Princeton University Press) p118

    [2]

    Wang Q X, Blake J R 2010 J. Fluid Mech. 659 1911

    [3]

    Naude C F, Ellis A T 1961 Trans. ASME, J. Basic Eng. 83 648

    [4]

    Blake J R, Gibson D C 1987 Annu. Rev. Fluid Mech. 19 99

    [5]

    Khoo B C, Klaseboer E, Hung K C 2005 Sensors and Actuators A 118 152

    [6]

    Lew K S F, Klaseboer E, Khoo B C 2007 Sensors and Actuators A 133 161

    [7]

    Karri B, Pillai K S, Klaseboer E, Ohl S-W, Khoo B C 2011 Sensors and Actuators A: Physica 169 151

    [8]

    Wang S P, Zhang A M, Liu Y L, Wu C 2013 Acta Phys. Sin. 62 064703 (in Chinese) [王诗平, 张阿漫, 刘云龙, 吴超 2013 物理学报 62 064703]

    [9]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Comput. Fluids. 25 607

    [10]

    Klaseboer E, Huang K C, Wang C, Wang C W, Khoo B C, Boyce P, Debono S, Charlier H 2005 J. Fluid Mech. 537 387

    [11]

    Wang C, Khoo B C, Yeo K S 2003 Computers and Fluids 32 1195

    [12]

    Zhang A M 2006 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [张阿漫 2006 博士论文 (哈尔滨: 哈尔滨工程大学)]

    [13]

    Ni B Y 2012 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [倪宝玉 2012 博士论文(哈尔滨: 哈尔滨工程大学)]

    [14]

    Dadvand A, Khoo B C, Shervani-Tabar M T, Khalilpourazary S 2012 Engin. Anal. Boundary Elements 36 1595

    [15]

    Zhang A M, Xiao W, Wang S P, Cheng X O 2013 Acta Phys. Sin. 62 014703 (in Chinese) [张阿漫, 肖巍, 王诗平, 程潇欧2013 物理学报 62 014703]

    [16]

    Szeri A J, Storey B D, Pearson A, Blake J R 2003 Phys. Fluids 15 2576

  • [1]

    Cole R H 1948 Underwater Explosion (1st Ed.) (New Jersey: Princeton University Press) p118

    [2]

    Wang Q X, Blake J R 2010 J. Fluid Mech. 659 1911

    [3]

    Naude C F, Ellis A T 1961 Trans. ASME, J. Basic Eng. 83 648

    [4]

    Blake J R, Gibson D C 1987 Annu. Rev. Fluid Mech. 19 99

    [5]

    Khoo B C, Klaseboer E, Hung K C 2005 Sensors and Actuators A 118 152

    [6]

    Lew K S F, Klaseboer E, Khoo B C 2007 Sensors and Actuators A 133 161

    [7]

    Karri B, Pillai K S, Klaseboer E, Ohl S-W, Khoo B C 2011 Sensors and Actuators A: Physica 169 151

    [8]

    Wang S P, Zhang A M, Liu Y L, Wu C 2013 Acta Phys. Sin. 62 064703 (in Chinese) [王诗平, 张阿漫, 刘云龙, 吴超 2013 物理学报 62 064703]

    [9]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Comput. Fluids. 25 607

    [10]

    Klaseboer E, Huang K C, Wang C, Wang C W, Khoo B C, Boyce P, Debono S, Charlier H 2005 J. Fluid Mech. 537 387

    [11]

    Wang C, Khoo B C, Yeo K S 2003 Computers and Fluids 32 1195

    [12]

    Zhang A M 2006 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [张阿漫 2006 博士论文 (哈尔滨: 哈尔滨工程大学)]

    [13]

    Ni B Y 2012 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [倪宝玉 2012 博士论文(哈尔滨: 哈尔滨工程大学)]

    [14]

    Dadvand A, Khoo B C, Shervani-Tabar M T, Khalilpourazary S 2012 Engin. Anal. Boundary Elements 36 1595

    [15]

    Zhang A M, Xiao W, Wang S P, Cheng X O 2013 Acta Phys. Sin. 62 014703 (in Chinese) [张阿漫, 肖巍, 王诗平, 程潇欧2013 物理学报 62 014703]

    [16]

    Szeri A J, Storey B D, Pearson A, Blake J R 2003 Phys. Fluids 15 2576

  • [1] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220632
    [2] 郑监, 张舵, 蒋邦海, 卢芳云. 气泡与自由液面相互作用形成水射流的机理研究. 物理学报, 2017, 66(4): 044702. doi: 10.7498/aps.66.044702
    [3] 吕明, 宁智, 阎凯. 线性与非线性稳定性理论下液体射流空间发展的对比研究. 物理学报, 2016, 65(16): 166801. doi: 10.7498/aps.65.166801
    [4] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [5] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究. 物理学报, 2015, 64(1): 015201. doi: 10.7498/aps.64.015201
    [6] 叶亚龙, 李艳青, 张阿漫. 基于势流理论的气枪气泡远场压力子波特性研究. 物理学报, 2014, 63(5): 054706. doi: 10.7498/aps.63.054706
    [7] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究 . 物理学报, 2013, 62(14): 144701. doi: 10.7498/aps.62.144701
    [8] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析. 物理学报, 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [9] 倪宝玉, 李帅, 张阿漫. 气泡在自由液面破碎后的射流断裂现象研究. 物理学报, 2013, 62(12): 124704. doi: 10.7498/aps.62.124704
    [10] 王诗平, 张阿漫, 刘云龙, 吴超. 圆形破口附近气泡动态特性实验研究. 物理学报, 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [11] 张阿漫, 肖巍, 王诗平, 程潇欧. 不同沙粒底面下气泡脉动特性实验研究. 物理学报, 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [12] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟. 物理学报, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [13] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究. 物理学报, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [14] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究 . 物理学报, 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [15] 王诗平, 张阿漫, 刘云龙, 姚熊亮. 气泡与弹性膜的耦合效应数值模拟. 物理学报, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [16] 张阿漫, 姚熊亮. 近自由面水下爆炸气泡的运动规律研究. 物理学报, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [17] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究. 物理学报, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [18] 王 琛, 方智恒, 孙今人, 王 伟, 熊 俊, 叶君建, 傅思祖, 顾 援, 王世绩, 郑无敌, 叶文华, 乔秀梅, 张国平. 利用X射线激光进行激光等离子体射流的诊断. 物理学报, 2008, 57(12): 7770-7775. doi: 10.7498/aps.57.7770
    [19] 张阿漫, 姚熊亮, 李 佳. 气泡群的动态物理特性研究. 物理学报, 2008, 57(3): 1672-1682. doi: 10.7498/aps.57.1672
    [20] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析. 物理学报, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
计量
  • 文章访问数:  3269
  • PDF下载量:  771
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-28
  • 修回日期:  2013-03-30
  • 刊出日期:  2013-07-05

基于边界元法的近平板圆孔气泡动力学行为研究

  • 1. 哈尔滨工程大学船舶工程学院, 哈尔滨 150001
    基金项目: 国家自然科学基金(批准号: 50939002, 51222904)和 国家安全重大基础研究项目(批准号: 613157020102)资助的课题.

摘要: 研究了带有圆孔的平板附近气泡动力学特性. 基于不可压缩势流理论, 建立了平板圆形破口附近气泡运动数值模型, 并针对气泡初始位置距离破口很近而导致计算结果发散的数值缺陷, 采用气泡壁和壁面融合的方法, 将流场分离为两个半无限域问题进行求解, 实现了在不同无量纲参数范围内的数值模拟, 数值结果与实验结果符合良好. 通过对圆孔附近气泡运动特性的研究发现, 圆孔对气泡的影响基本与壁面相反, 在膨胀阶段对气泡产生腔吸作用, 收缩阶段产生排斥, 在特定的工况下会产生对射流现象. 最后分析了气泡壁与壁面融合, 流场分离后的气泡动态特性以及各工况参数对其影响规律.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回