搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征

余荣 江月松 余兰 欧军

引用本文:
Citation:

利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征

余荣, 江月松, 余兰, 欧军

Using scattered light to amplify the photoacoustic spectroscopic signatures of the main absorbing material in a weakly light-absorbing solid mixture

Yu Rong, Jiang Yue-Song, Yu Lan, Ou Jun
PDF
导出引用
  • 在传统的透射和反射光谱中, 散射光通常是误差的主要来源之一, 然而对光声光谱, 散射光有可能成为促进光谱测量的积极因素. 本文研究了弱吸收固体混合物–-奥氮平药片及其粉末的光声光谱. 为了排除光声池吸收散射光所产生背景光声信号的干扰, 取试样与其空白物的差值谱进行碳黑归一化, 得到了只与试样自身性质相关的归一化光声光谱.实验发现通过将药片碾成粉末, 可以使奥氮平药片的主成分奥氮平原料药的光声光谱特征凸显出来. 分析表明光散射效应是这一现象产生的主要原因. 传统光谱技术的障碍–-散射光却能促进光声光谱测量, 这显示出光声技术在光谱测量领域的独特优势. 上述实验提供了一种初步快速鉴别弱吸收固体混合物中少量光吸收物质的新方法, 这一方法有望应用于固体药物、矿物和土壤分析等领域.
    Scattered light by the sample is usually one of the main error source in conventional transmission spectroscopy and diffuse reflection spectroscopy. However, scattered light may be useful for photoacoustic spectroscopy measurement. In the present experiment, the photoacoustic spectra of an olanzapine drug tablet and its powder are studied. The olanzapine tablet is a weakly light-absorbing solid mixture and its main constituent is olanzapine. In order to eliminate the background signal produced by the photoacoustic cell wall due to absorbing the scattered light by the sample, the difference between the photoacoustic spectrum of the sample and that of its base is taken and normalized with the photoacoustic spectrum of carbon black. It is found that the photoacoustic spectroscopic signatures of olanzapine in the olanzapine table become obvious when the olanzapine table is powdered. This is the result of the internal light scattering effect in the sample. The scattered light which serves as an obstacle in conventional optical spectroscopy techniques, however, facilitates the photoacoustic spectroscopy measurement. This indicates the particular advantage of photoacoustic spectroscopy. A new method to preliminarily fast identify the main absorbing component in a weakly light-absorbing solid mixture is proposed based on the above experiment. This method can be applied to the field of solid drug and mineral and soil and so on.
    • 基金项目: 国家自然科学基金(批准号:41140035)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41140035).
    [1]

    Rosencwaig A, Gersho A 1976 J. Appl. Phys. 47 64

    [2]

    Rosencwaig A 1975 Anal. Chem. 47 592

    [3]

    Rosencwaig A 1980 Photoacoustic and Photoacoustic Spectroscopy (New York:Wiley)

    [4]

    West G A 1983 Rev. Sci. Instrum. 54 797

    [5]

    Tam A 1986 Rev. Mod. Phys. 58 381

    [6]

    Haisch C 2011 Meas. Sci. Technol. 23 012001

    [7]

    Lee K H, Li Y D, Du Y L, Wu B M 2003 Acta Phys. Sin. 52 1260 (in Chinese) [李纪焕, 李宜德, 杜英磊, 吴柏枚 2003 物理学报 52 1260]

    [8]

    Wang H Y, Yang Y T, Liu X J, Zhang S Y 2010 J. Rare Earth 28 211

    [9]

    Wu D, Tao C, Liu X J 2010 Acta Phys. Sin. 59 5845 (in Chinese) [吴丹, 陶超, 刘晓峻 2010 物理学报 59 5845]

    [10]

    Helander P, Lundstrom I, McQueen D 1980 J. Appl. Phys. 51 3841

    [11]

    Tilgner R 1981 Appl. Opt. 20 3780

    [12]

    Burggraf L W, Leyden D E 1981 Anal. Chem. 53 759

    [13]

    Becconsall J K, Percy J, Reid R F 1981 Anal. Chem. 53 2037

    [14]

    Rajian J R, Carson P L, Wang X 2009 Opt. Express 17 4879

    [15]

    McClelland J F, Kniseley R N 1976 Appl. Opt. 15 2967

    [16]

    Foldy L L 1945 Phys. Rev. 67 107

    [17]

    Lax M 1951 Rev. Mod. Phys. 23 287

    [18]

    Twersky V 1970 J. Opt. Soc. Am. 60 1084

    [19]

    Yip W, Li X 2008 Opt. Lett. 33 2877

    [20]

    Fisher A R, Schissler A J, Schotland J C 2007 Phys. Rev. E 76 036604

    [21]

    Helander P 1983 J. Appl. Phys. 54 3410

    [22]

    McClelland J F, Kniseley R N 1976 Appl. Opt. 15 2658

    [23]

    Mironychev A P, Maksimova I L, Romanov S V 1998 Proc. SPIE BIOS Europe'97 3354 383

    [24]

    Kawahara T, Yamaguchi N, Mihara M, Kiyotoo T, Kimura A, Funaki S, Morimoto J, Tahira K, Miyakawa T 2000 Mem. Nat. Def. Acad. Math. Phys. Chem. Eng. 40 31

    [25]

    Rajesh R J, Carson P L, Wang X D 2009 Porc. SPIE p717715

    [26]

    Stefansson S E 2009 U.S. Patent 0035332 [2009-02-05]

    [27]

    Rosencwaig A 1977 Rev. Sci. Instrum. 48 1133

    [28]

    Raggi M A, Casamenti G, Mandrioli R, Izzo G, Kenndler E 2000 J. Pharmaceu. Biomed. 23 973

    [29]

    Ayala A, Siesler H, Boese R, Hoffmann G, Polla G, Vega D 2006 Int. J. Pharm. 326 69

    [30]

    Reich G 2005 Adv. Drug Deliver. Rev. 57 1109

    [31]

    Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N 2007 J. Pharmaceut. Biomed. 44 683

    [32]

    Nakai Y, Yamamoto K, Terada K, Sakai M 1985 Chem. Pharm. Bull. 33 3068

  • [1]

    Rosencwaig A, Gersho A 1976 J. Appl. Phys. 47 64

    [2]

    Rosencwaig A 1975 Anal. Chem. 47 592

    [3]

    Rosencwaig A 1980 Photoacoustic and Photoacoustic Spectroscopy (New York:Wiley)

    [4]

    West G A 1983 Rev. Sci. Instrum. 54 797

    [5]

    Tam A 1986 Rev. Mod. Phys. 58 381

    [6]

    Haisch C 2011 Meas. Sci. Technol. 23 012001

    [7]

    Lee K H, Li Y D, Du Y L, Wu B M 2003 Acta Phys. Sin. 52 1260 (in Chinese) [李纪焕, 李宜德, 杜英磊, 吴柏枚 2003 物理学报 52 1260]

    [8]

    Wang H Y, Yang Y T, Liu X J, Zhang S Y 2010 J. Rare Earth 28 211

    [9]

    Wu D, Tao C, Liu X J 2010 Acta Phys. Sin. 59 5845 (in Chinese) [吴丹, 陶超, 刘晓峻 2010 物理学报 59 5845]

    [10]

    Helander P, Lundstrom I, McQueen D 1980 J. Appl. Phys. 51 3841

    [11]

    Tilgner R 1981 Appl. Opt. 20 3780

    [12]

    Burggraf L W, Leyden D E 1981 Anal. Chem. 53 759

    [13]

    Becconsall J K, Percy J, Reid R F 1981 Anal. Chem. 53 2037

    [14]

    Rajian J R, Carson P L, Wang X 2009 Opt. Express 17 4879

    [15]

    McClelland J F, Kniseley R N 1976 Appl. Opt. 15 2967

    [16]

    Foldy L L 1945 Phys. Rev. 67 107

    [17]

    Lax M 1951 Rev. Mod. Phys. 23 287

    [18]

    Twersky V 1970 J. Opt. Soc. Am. 60 1084

    [19]

    Yip W, Li X 2008 Opt. Lett. 33 2877

    [20]

    Fisher A R, Schissler A J, Schotland J C 2007 Phys. Rev. E 76 036604

    [21]

    Helander P 1983 J. Appl. Phys. 54 3410

    [22]

    McClelland J F, Kniseley R N 1976 Appl. Opt. 15 2658

    [23]

    Mironychev A P, Maksimova I L, Romanov S V 1998 Proc. SPIE BIOS Europe'97 3354 383

    [24]

    Kawahara T, Yamaguchi N, Mihara M, Kiyotoo T, Kimura A, Funaki S, Morimoto J, Tahira K, Miyakawa T 2000 Mem. Nat. Def. Acad. Math. Phys. Chem. Eng. 40 31

    [25]

    Rajesh R J, Carson P L, Wang X D 2009 Porc. SPIE p717715

    [26]

    Stefansson S E 2009 U.S. Patent 0035332 [2009-02-05]

    [27]

    Rosencwaig A 1977 Rev. Sci. Instrum. 48 1133

    [28]

    Raggi M A, Casamenti G, Mandrioli R, Izzo G, Kenndler E 2000 J. Pharmaceu. Biomed. 23 973

    [29]

    Ayala A, Siesler H, Boese R, Hoffmann G, Polla G, Vega D 2006 Int. J. Pharm. 326 69

    [30]

    Reich G 2005 Adv. Drug Deliver. Rev. 57 1109

    [31]

    Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N 2007 J. Pharmaceut. Biomed. 44 683

    [32]

    Nakai Y, Yamamoto K, Terada K, Sakai M 1985 Chem. Pharm. Bull. 33 3068

  • [1] 孙苗, 杨爽, 汤玉泉, 赵晓虎, 张志荣, 庄飞宇. 基于拉曼散射光动态校准的分布式光纤温度传感系统. 物理学报, 2022, 71(20): 200701. doi: 10.7498/aps.71.20220611
    [2] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测. 物理学报, 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [3] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏. 面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化. 物理学报, 2021, 70(17): 170701. doi: 10.7498/aps.70.20210532
    [4] 靳华伟, 胡仁志, 谢品华, 陈浩, 李治艳, 王凤阳, 王怡慧, 林川. 适用于ppb量级NO2检测的低功率蓝光二极管光声技术研究. 物理学报, 2019, 68(7): 070703. doi: 10.7498/aps.68.20182262
    [5] 程刚, 曹渊, 刘锟, 曹亚南, 陈家金, 高晓明. 光声光谱检测装置中光声池的数值计算及优化. 物理学报, 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [6] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体. 物理学报, 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [7] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性. 物理学报, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [8] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱. 物理学报, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [9] 许雪梅, 戴鹏, 杨兵初, 尹林子, 曹建, 丁一鹏, 曹粲. 光声池中微弱光声信号检测. 物理学报, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [10] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲. 基于光声光谱技术的NO,NO2气体分析仪研究. 物理学报, 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [11] 袁长迎, 炎正馨, 蒙瑰, 李智慧, 尚丽平. 高浓度气体共振光声光谱信号饱和特性研究. 物理学报, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
    [12] 哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明. 受激布里渊散射光脉冲波形的研究. 物理学报, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [13] 龚华平, 吕志伟, 林殿阳, 吕月兰. 透镜焦距对受激布里渊散射光限幅特性的影响. 物理学报, 2006, 55(6): 2735-2739. doi: 10.7498/aps.55.2735
    [14] 吕月兰, 董永康, 吕志伟. 受激布里渊散射光限幅输出波形控制研究. 物理学报, 2006, 55(10): 5247-5251. doi: 10.7498/aps.55.5247
    [15] 张晓丹, 赵 颖, 朱 锋, 魏长春, 吴春亚, 高艳涛, 侯国付, 孙 建, 耿新华, 熊绍珍. VHF-PECVD低温制备微晶硅薄膜的拉曼散射光谱和光发射谱研究. 物理学报, 2005, 54(1): 445-449. doi: 10.7498/aps.54.445
    [16] 李宜德, 杜英磊, 李纪焕, 吴柏枚. 光声谱研究多孔碳化硅的能带特性. 物理学报, 2003, 52(5): 1260-1263. doi: 10.7498/aps.52.1260
    [17] 张西芹, 邢达. 超声调制介质中漫散射光自相关性质研究. 物理学报, 2001, 50(10): 1914-1919. doi: 10.7498/aps.50.1914
    [18] 周岚, 张淑仪, 傅少伟, 王志, 张立德. 纳米SrTiO3的光声光谱研究. 物理学报, 1997, 46(5): 994-1000. doi: 10.7498/aps.46.994
    [19] 吴华生, 劳浦东, 邬建根, 屈逢源. 喇曼散射光极值法定金刚石结构薄层的晶向. 物理学报, 1989, 38(1): 111-117. doi: 10.7498/aps.38.111
    [20] 詹达三. 散射光干涉图样的一种计算方法. 物理学报, 1980, 29(12): 1608-1612. doi: 10.7498/aps.29.1608
计量
  • 文章访问数:  4882
  • PDF下载量:  464
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-20
  • 修回日期:  2012-12-24
  • 刊出日期:  2013-04-05

/

返回文章
返回