搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测

曹亚南 王贵师 谈图 汪磊 梅教旭 蔡廷栋 高晓明

引用本文:
Citation:

基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测

曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明

Concentration and pressure measurement of water vapor in sealed glass containers based on tunable diode laser absorption spectroscopy

Cao Ya-Nan, Wang Gui-Shi, Tan Tu, Wang Lei, Mei Jiao-Xu, Cai Ting-Dong, Gao Xiao-Ming
PDF
导出引用
  • 冻干法处理过的药品瓶中残存的水汽(H2O)是药品变质的主要影响因素之一, 如何快速准确地测量瓶中的水汽浓度及压力, 是检测药瓶是否泄漏的关键. 本文报道了利用1.39 m半导体激光器作为光源, 结合波长调制吸收光谱技术, 实现了对密闭玻璃容器(药瓶)中水汽浓度及压力的探测, 并通过转台模拟生产线对系统在动态条件下的性能进行了测试. 研究结果表明, 在0.2%-12%的H2O浓度范围内真实值与测量值之间的相关度和标准偏差为0.9978 和4.81%, 在0.1-100 atm (1 atm=1.01325105 Pa)的压力范围内两者之间的相关度和标准偏差为0.982和5.6%, 系统对应的压力及浓度的最低检测限约为2.5 Torr (1 Torr=1.33102 Pa)和400 ppm. 通过利用转台以及Labview编写的快速在线处理软件进行了动态条件下的测试, 一分钟可以处理300个左右的药瓶, 可以很好地满足快速实时探测的要求. 该方案可以直接应用于药瓶在线检测, 并且使用2台激光器可以实现多组分同时探测分析(如H2O、氧气等).
    Water vapor in a sealed glass container processed by lyophilization is a main factor for drug metamorphism. The key to knowing whether there is a leakage occurring in the container is how to detect water concentration and pressure in the sealed container quickly and accurately. In the present paper, a strong absorption line of H2O near 1.39 m is carefully selected to avoid the interference of neighboring transitions. A distributed feedback laser semiconductor laser near 1.396 m is employed as the light source with a power of 10 mW and typical linewidth of 2 MHz by combining with tunable diode laser absorption spectroscopy technique, the concentrations and pressures of water vapor in the sealed container are successfully detected under static condition and dynamic condition. In order to isolate the interference absorption from the ambient water vapor in the air, a differential absorption technique is employed in our experiment, which makes our system simpler than routine nitrogen purging based system. During the measurement, the second harmonic signal is utilized for measuring the concentration and pressure, the concentration is retrieved by the peak value while the pressure is calculated by the full width at half maximum. For the measurement of concentration ranging from 0.2% to 12%, the linear correlation coefficient between the real values and the inversed values and the standard deviation ratio are 0.9978 and 4.81%, respectively. For the measurement of pressure, the correlation coefficient and standard deviation ratio are 0.982 and 5.6%, respectively. The minimum detection limits of the concentration and pressure are 400 ppm and 2.5 Torr, respectively. Moreover, in order to test the system for on-line applications in the pharmaceutical industry, measurements are performed in vials which are placed on a rotary stage to simulate the process of the assemble line. In particular, the amplitude of sinuous signal without absorption is used as the reference signal to validate whether the vial is in the optical path. Besides, this amplitude is also utilized to normalize the laser power. The results show that our system can handle about 300 bottles in one minute, which can meet well the requirements for rapid and real-time detections. This system can be applied directly to the medicine bottle on-line detection, and multicomponent detection can also be realized by employing two or more lasers (e.g. H2O, oxygen, etc.). In the future, we plan to build a system for detecting water vapor and oxygen simultaneously, as oxygen is another import indicator for drug metamorphism.
      通信作者: 王贵师, wulixi2004@126.com;xmgao@aiofm.ac.cn ; 高晓明, wulixi2004@126.com;xmgao@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41205120, 11104237, 61475068) 资助的课题.
      Corresponding author: Wang Gui-Shi, wulixi2004@126.com;xmgao@aiofm.ac.cn ; Gao Xiao-Ming, wulixi2004@126.com;xmgao@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41205120, 11104237, 61475068).
    [1]

    Gun J, Zhao L C 2011 Gansu Med. J. 30 50 (in Chinese) [郭军, 赵良存 2011 甘肃医药 30 50]

    [2]

    Pikal M J, Shah S 1997 PDA J. Pharm. Sci. Tech. 51 17

    [3]

    Schneid S C, Gieseler H, Kessler W J, Luthra S A, Pika M J 2011 AAPS Pharm. Sci. Tech. 12 379

    [4]

    Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 53301 (in Chinese) [张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 物理学报 64 53301]

    [5]

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927]

    [6]

    Geng H, Liu J G, Zhang Y J, Kan R F, Xu Z Y, Yao L, Ruan J 2014 Acta Phys. Sin. 63 043301 (in Chinese) [耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊 2014 物理学报 63 043301]

    [7]

    Wang H, Cao Z S, Wang Z Q, Wang L S, Gao W, Zhang W J, Gao X M 2010 Spectrosc. Spect. Anal. 30 1161 (in Chinese) [王欢, 曹振松, 王竹青, 汪六三, 高伟, 张为俊, 高晓明 2010 光谱学与光谱分析 30 1161]

    [8]

    Cai T D, Wang G S, Chen W D, Zhang W J, Gao X M 2009 Spectro sc. Spect. Anal. 29 1463 (in Chinese) [蔡廷栋, 王贵师, 陈卫东, 张为俊, 高晓明 2009 光谱学与光谱分析 29 1463]

    [9]

    Gieseler H, Kessler W J, Finson M, Davis S J, Mulhall P A, Bons V, Debo D J, Pikal M J 2007 Pharm. Technol. 96 1776

    [10]

    Cai T D, Gao G Z, Liu Y 2013 Appl. Opt. 52 7682

    [11]

    Kuu W Y, Nail S L, Sacha G 2009 J. Pharm. Sci. 98 1136

    [12]

    Cai T D, Wang G S, Cao Z S, Zhang W J, Gao X M 2014 Opt. Laser. Eng. 58 48

    [13]

    Cassidy D T, Reid J 1982 Appl. Opt. 21 1185

    [14]

    Mount G H, Rumburg B, Havig J, Lamb B, Westberg H, Yonge D, Johnson K Kincaid R 2002 Atmos. Enviro. 36 1799

    [15]

    Sun X Q, Ewing D J, Ma L 2012 Particuology 10 9

    [16]

    Corsi C, D'Amato F, de Rosa M, Modugno G 1999 Eur. Phys. J. D 6 327

  • [1]

    Gun J, Zhao L C 2011 Gansu Med. J. 30 50 (in Chinese) [郭军, 赵良存 2011 甘肃医药 30 50]

    [2]

    Pikal M J, Shah S 1997 PDA J. Pharm. Sci. Tech. 51 17

    [3]

    Schneid S C, Gieseler H, Kessler W J, Luthra S A, Pika M J 2011 AAPS Pharm. Sci. Tech. 12 379

    [4]

    Zhang S F, Lan L J, Ding Y J, Jia J W, Peng Z M 2015 Acta Phys. Sin. 64 53301 (in Chinese) [张书锋, 蓝丽娟, 丁艳军, 贾军伟, 彭志敏 2015 物理学报 64 53301]

    [5]

    Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese) [阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王敏, 陈军 2005 物理学报 54 1927]

    [6]

    Geng H, Liu J G, Zhang Y J, Kan R F, Xu Z Y, Yao L, Ruan J 2014 Acta Phys. Sin. 63 043301 (in Chinese) [耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊 2014 物理学报 63 043301]

    [7]

    Wang H, Cao Z S, Wang Z Q, Wang L S, Gao W, Zhang W J, Gao X M 2010 Spectrosc. Spect. Anal. 30 1161 (in Chinese) [王欢, 曹振松, 王竹青, 汪六三, 高伟, 张为俊, 高晓明 2010 光谱学与光谱分析 30 1161]

    [8]

    Cai T D, Wang G S, Chen W D, Zhang W J, Gao X M 2009 Spectro sc. Spect. Anal. 29 1463 (in Chinese) [蔡廷栋, 王贵师, 陈卫东, 张为俊, 高晓明 2009 光谱学与光谱分析 29 1463]

    [9]

    Gieseler H, Kessler W J, Finson M, Davis S J, Mulhall P A, Bons V, Debo D J, Pikal M J 2007 Pharm. Technol. 96 1776

    [10]

    Cai T D, Gao G Z, Liu Y 2013 Appl. Opt. 52 7682

    [11]

    Kuu W Y, Nail S L, Sacha G 2009 J. Pharm. Sci. 98 1136

    [12]

    Cai T D, Wang G S, Cao Z S, Zhang W J, Gao X M 2014 Opt. Laser. Eng. 58 48

    [13]

    Cassidy D T, Reid J 1982 Appl. Opt. 21 1185

    [14]

    Mount G H, Rumburg B, Havig J, Lamb B, Westberg H, Yonge D, Johnson K Kincaid R 2002 Atmos. Enviro. 36 1799

    [15]

    Sun X Q, Ewing D J, Ma L 2012 Particuology 10 9

    [16]

    Corsi C, D'Amato F, de Rosa M, Modugno G 1999 Eur. Phys. J. D 6 327

  • [1] 王钰豪, 刘建国, 徐亮, 刘文清, 宋庆利, 金岭, 徐寒杨. 不同温度压力对浓度反演精度的定量分析. 物理学报, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [2] 丁武文, 孙利群, 衣路英. 基于可调谐半导体激光器吸收光谱的高灵敏度甲烷浓度遥测技术. 物理学报, 2017, 66(10): 100702. doi: 10.7498/aps.66.100702
    [3] 唐远河, 王淑华, 崔进, 徐颖, 梅屹峰, 李存霞. 被动遥测矿井CO气体温度及浓度的正演研究. 物理学报, 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [4] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [5] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [6] 李时春, 陈根余, 周聪, 陈晓锋, 周宇. 万瓦级光纤激光焊接过程中小孔内外等离子体研究. 物理学报, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [7] 周海金, 刘文清, 司福祺, 窦科. 多轴差分吸收光谱技术测量近地面NO2体积混合比浓度方法研究. 物理学报, 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [8] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究. 物理学报, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [9] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰. 基于可调谐半导体激光器吸收光谱的温度测量方法研究. 物理学报, 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [10] 宋俊玲, 洪延姬, 王广宇, 潘虎. 基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究. 物理学报, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [11] 徐晋, 谢品华, 司福祺, 李昂, 刘文清. 机载多轴差分吸收光谱技术获取对流层NO2垂直柱浓度的研究. 物理学报, 2012, 61(2): 024204. doi: 10.7498/aps.61.024204
    [12] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军. 基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究. 物理学报, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [13] 刘远东, 尹益辉, 谭云. 一般边界条件下球形压力容器钢壁中氚和氦-3的浓度变化规律研究. 物理学报, 2012, 61(15): 156601. doi: 10.7498/aps.61.156601
    [14] 胡伟, 李宗良, 马勇, 李英德, 王传奎. 单硫醇分子结的几何结构和电输运性质:压力效应与末端基团效应. 物理学报, 2011, 60(1): 017304. doi: 10.7498/aps.60.017304
    [15] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [16] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [17] 张 敏, 班士良. 压力下应变异质结中施主杂质态的Stark效应. 物理学报, 2008, 57(7): 4459-4465. doi: 10.7498/aps.57.4459
    [18] 聂 颖, 隋 郁, 宋秀丹, 王先杰, 程金光, 千正男, 苏文辉. 成型压力对CrO2低温输运性质的影响. 物理学报, 2006, 55(6): 3038-3042. doi: 10.7498/aps.55.3038
    [19] 陈 鹤, 刘粤惠, 姚小旭, 冯洲明. 不同Tm3+浓度掺杂碲酸盐玻璃光谱性质研究. 物理学报, 2005, 54(9): 4427-4432. doi: 10.7498/aps.54.4427
    [20] 彭建祥, 经福谦, 王礼立, 李大红. 冲击压缩下铝、铜、钨的剪切模量和屈服强度与压力和温度的相关性. 物理学报, 2005, 54(5): 2194-2197. doi: 10.7498/aps.54.2194
计量
  • 文章访问数:  5697
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-13
  • 修回日期:  2016-01-12
  • 刊出日期:  2016-04-05

/

返回文章
返回