搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平行电磁场中里德堡氢原子的自相似结构研究

李洪云 尹妍妍 王青 王立飞

引用本文:
Citation:

平行电磁场中里德堡氢原子的自相似结构研究

李洪云, 尹妍妍, 王青, 王立飞

self-similarity of Rydberg hydrogen atom in parallel electric and magnetic fields

Li Hong-Yun, Yin Yan-Yan, Wang Qing, Wang Li-Fei
PDF
导出引用
  • 利用半经典方法研究了平行电磁场中里德堡氢原子的分形自相似现象. 通过研究平行电磁场中里德堡氢原子的逃逸时间和初始出射角间的关系, 发现了逃逸时间图的自相似结构, 并通过研究与图中冰柱对应的逃逸轨道, 得到了自相似结构和逃逸轨道之间的关系, 发现了该类自相似逃逸轨道满足的规律. 进一步研究了标度能量和标度磁场对体系动力学的影响, 表明标度能量和标度磁场均控制体系的分形自相似结构. 当标度能量或标度磁场比较小时, 没有自相似现象, 随着标度能量或标度磁场的增大, 自相似出现, 体系变复杂.
    Using the semi-classical methods, the self-similarity structure of Rydberg hydrogen atom in parallel electric and magnetic fields is analysed in this paper. Based on the Hamiltonian canonical equations, all the escape orbits are found, and the escape time and the initial launch angle of every escape orbit can be derived. The self-similarity structure of escape time plot is found by studying the relationship between the escape time and the initial launch angle of electron in parallel electric and magnetic fields. The relationship between the self-similarity structure and escape orbits is also established through the study of the escape orbits in the escape time plot. The regularity of escape orbits in self-similarity structure is found and the corresponding escape orbits in self-similarity structure plots meet the law of (-o)k. According to this rule, the self-similarity structure can be easily found, and the rule is applicable to other research system. Moreover, the influences of scaled energy and scaled magnetic field are analyzed in detail. It is presented that the dynamic behavior of the Rydberg hydrogen atom is sensitively controlled by scaled energy and scaled magnetic field. Different scaled energies or scaled magnetic fields can lead to different escape behaviors of electron. It is also found that the self-similarity structure is present not in all cases. When scaled energy or scaled magnetic field is small, the escape time plot is simple, and no self-similarity structure is observed. When scaled energy or scaled magnetic field increases, self-similarity structure appears accordingly and the system becomes complicated. When scaled energy or scaled magnetic field changes, the self-similarity region also changes. For a given scaled magnetic field, with the increase of scaled energy, self-similarity region shifts toward the bigger initial launch angle, while self-similarity region shifts toward the smaller initial launch angle with the increase of scaled magnetic field for a given scaled energy.
      通信作者: 李洪云, li5776@163.com
    • 基金项目: 国家自然科学基金专项基金(批准号: 11347156)和山东交通学院博士基金资助的课题.
      Corresponding author: Li Hong-Yun, li5776@163.com
    • Funds: Project supported by the Special Funds of the National Natural Science Foundation of China (Grant No. 11347156) and the Doctor Foundation of Shandong Jiaotong University, China.
    [1]

    Paradis E, Zigo S, Raithel G 2013 Phys. Rev. A 87 012505

    [2]

    Wang D H 2011 Chin. Phys. B 20 13403

    [3]

    Wang L, Quan W, Shen L, Yang H F, Shi T Y, Liu X J, Liu H P, Zhan M S 2009 Chin. Phys. B 18 4791

    [4]

    Wang D H, Lin S L 2004 Chin. Phys. 13 464

    [5]

    Liu X J, Cao J W, Zhan M S, Connerade J P 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2069

    [6]

    Dando P A, Monteiro T S, Owen S M 1998 Phys. Rev. Lett. 80 2797

    [7]

    Lankhuijzen G M, Noordam L D 1996 Phys. Rev. Lett. 76 1784

    [8]

    Robicheaux F, Shaw J 1997 Phys. Rev. A 56 278

    [9]

    Mitchell K A, Handley J P, Tighe B, Flower A, Delos J B 2004 Phys. Rev. A 70 043407

    [10]

    Mitchell K A, Handley J P, Tighe B, Flower A, Delos J B 2004 Phys. Rev. Lett. 92 073001

    [11]

    Topçu T, Robicheaux F 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1925

    [12]

    Wang D H, Huang K Y, Zhou H, Lin S L 2009 J. Electron. Spectrosc. Relat. Phenom. 169 86

    [13]

    Haggerty M R, Delos J B 2000 Phys. Rev. A 61 053406

    [14]

    Mao J M, Rapelje K A, Blodgett-Ford S J, Delos J B, König A, Rinneberg H 1993 Phys. Rev. A 48 2117

    [15]

    Mitchell K A, Delos J B 2007 Physica D 229 9

  • [1]

    Paradis E, Zigo S, Raithel G 2013 Phys. Rev. A 87 012505

    [2]

    Wang D H 2011 Chin. Phys. B 20 13403

    [3]

    Wang L, Quan W, Shen L, Yang H F, Shi T Y, Liu X J, Liu H P, Zhan M S 2009 Chin. Phys. B 18 4791

    [4]

    Wang D H, Lin S L 2004 Chin. Phys. 13 464

    [5]

    Liu X J, Cao J W, Zhan M S, Connerade J P 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2069

    [6]

    Dando P A, Monteiro T S, Owen S M 1998 Phys. Rev. Lett. 80 2797

    [7]

    Lankhuijzen G M, Noordam L D 1996 Phys. Rev. Lett. 76 1784

    [8]

    Robicheaux F, Shaw J 1997 Phys. Rev. A 56 278

    [9]

    Mitchell K A, Handley J P, Tighe B, Flower A, Delos J B 2004 Phys. Rev. A 70 043407

    [10]

    Mitchell K A, Handley J P, Tighe B, Flower A, Delos J B 2004 Phys. Rev. Lett. 92 073001

    [11]

    Topçu T, Robicheaux F 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1925

    [12]

    Wang D H, Huang K Y, Zhou H, Lin S L 2009 J. Electron. Spectrosc. Relat. Phenom. 169 86

    [13]

    Haggerty M R, Delos J B 2000 Phys. Rev. A 61 053406

    [14]

    Mao J M, Rapelje K A, Blodgett-Ford S J, Delos J B, König A, Rinneberg H 1993 Phys. Rev. A 48 2117

    [15]

    Mitchell K A, Delos J B 2007 Physica D 229 9

  • [1] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学. 物理学报, 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德堡原子tune-out波长. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240397
    [3] 吴逢川, 安强, 姚佳伟, 付云起. 里德堡原子超外差接收链路中的内禀增益系数研究. 物理学报, 2023, 72(4): 047401. doi: 10.7498/aps.72.20222091
    [4] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [5] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究. 物理学报, 2022, 71(1): 014202. doi: 10.7498/aps.71.20211284
    [6] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [7] 张正源, 张天乙, 刘宗凯, 丁冬生, 史保森. 里德堡原子多体相互作用的研究进展. 物理学报, 2020, 69(18): 180301. doi: 10.7498/aps.69.20200649
    [8] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [9] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, 2015, 64(16): 160702. doi: 10.7498/aps.64.160702
    [10] 李洪云, 岳大光, 梁志强, 伊长虹, 陈建中. 外电场中金属表面附近里德堡氢原子的动力学行为. 物理学报, 2013, 62(20): 203401. doi: 10.7498/aps.62.203401
    [11] 杨秦男, 张延惠, 蔡祥吉, 蒋国辉, 徐学友. RIKEN介观器件腔中粒子输运过程的混沌性质及分形自相似结构研究. 物理学报, 2013, 62(8): 080505. doi: 10.7498/aps.62.080505
    [12] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [13] 邓善红, 高嵩, 李永平, 裴云昌, 林圣路. 平行电磁场中锂原子自电离的半经典分析. 物理学报, 2010, 59(2): 826-831. doi: 10.7498/aps.59.826
    [14] 王晓艳, 王鹏程, 冯圣平, 谢晋东. 平行电磁场中He+2的回归谱与闭合轨道的研究. 物理学报, 2008, 57(3): 1347-1351. doi: 10.7498/aps.57.1347
    [15] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算. 物理学报, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [16] 陈 光. 共形平直时空中电磁场和标量场的解. 物理学报, 1999, 48(6): 992-994. doi: 10.7498/aps.48.992
    [17] 石玉珠, 李丽萍, 李毓成. 强磁场中氢原子能级的另一种绝热变分计算. 物理学报, 1998, 47(8): 1241-1247. doi: 10.7498/aps.47.1241
    [18] 张森, 邱济真, 王刚. 静电场中Ca原子里德堡态的能级结构. 物理学报, 1989, 38(3): 481-486. doi: 10.7498/aps.38.481
    [19] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
    [20] 张森, 邱济真, 胡素芬, 陆杰, 钟建伟, 梁宜, 孙家祯. Sr原子里德堡态的电场效应. 物理学报, 1988, 37(6): 983-988. doi: 10.7498/aps.37.983
计量
  • 文章访问数:  4754
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31
  • 修回日期:  2015-05-08
  • 刊出日期:  2015-09-05

/

返回文章
返回